web-analyze/2-9.py
fly6516 ee0754ff2f refactor(2-9.py): 更新日志文件路径为 HDFS 路径
- 将本地日志文件路径替换为 HDFS 路径,以便在分布式环境中处理大数据
- 此修改允许 Spark 从 HDFS 中读取日志数据,提高了数据处理的可扩展性和容错性
2025-04-14 04:06:06 +08:00

108 lines
3.4 KiB
Python

import re
import datetime
from pyspark.sql import SparkSession, Row
from pyspark.sql import functions as F
import matplotlib.pyplot as plt
# 定义日志解析的正则表达式
APACHE_ACCESS_LOG_PATTERN = '^(\S+) (\S+) (\S+) \[([\w:/]+\s[+-]\d{4})\] "(\S+) (\S+)\s(\S)" (\d{3}) (\S+)'
# 将Apache日志中的时间字符串解析为datetime对象
month_map = {'Jan': 1, 'Feb': 2, 'Mar': 3, 'Apr': 4, 'May': 5, 'Jun': 6, 'Jul': 7,
'Aug': 8, 'Sep': 9, 'Oct': 10, 'Nov': 11, 'Dec': 12}
def parse_apache_time(s):
"""Convert Apache time format into a Python datetime object"""
return datetime.datetime(int(s[7:11]),
month_map[s[3:6]],
int(s[0:2]),
int(s[12:14]),
int(s[15:17]),
int(s[18:20]))
def parseApacheLogLine(logline):
"""Parse a line in the Apache Common Log format"""
match = re.search(APACHE_ACCESS_LOG_PATTERN, logline)
if match is None:
return (logline, 0)
size_field = match.group(9)
size = int(size_field) if size_field != '-' else 0
return (Row(
host=match.group(1),
client_identd=match.group(2),
user_id=match.group(3),
date_time=parse_apache_time(match.group(4)),
method=match.group(5),
endpoint=match.group(6),
protocol=match.group(7),
response_code=int(match.group(8)),
content_size=size
), 1)
def main():
# 创建SparkSession
spark = SparkSession.builder \
.appName("Apache Log Analysis") \
.getOrCreate()
# 读取日志文件
logFile = 'hdfs://master:9000/user/root/apache.access.log.PROJECT'
rdd = spark.sparkContext.textFile(logFile)
# 解析日志行
parsed_logs = rdd.map(parseApacheLogLine)
# 过滤出有效日志行
access_logs = parsed_logs.filter(lambda s: s[1] == 1).map(lambda s: s[0]).cache()
# 将RDD转换为DataFrame
access_logs_df = spark.createDataFrame(access_logs)
# 过滤出404响应代码的日志
access_logs_404 = access_logs_df.filter(access_logs_df.response_code == 404)
# 提取小时信息
access_logs_with_hour = access_logs_404.withColumn("hour", F.hour(access_logs_404.date_time))
# 计算每小时的404响应代码数量
hourly_404_counts = access_logs_with_hour.groupBy("hour").count().orderBy("hour")
# 收集数据并准备绘图
hourly_counts = hourly_404_counts.collect()
# 提取小时和计数
hours = [row["hour"] for row in hourly_counts]
counts = [row["count"] for row in hourly_counts]
# 使用Matplotlib绘制折线图
plt.figure(figsize=(10, 6))
plt.plot(hours, counts, marker='o', linestyle='-', color='b', label='404 Responses')
plt.title("Hourly 404 Response Code Counts")
plt.xlabel("Hour of the Day")
plt.ylabel("Count of 404 Responses")
plt.xticks(range(24)) # 显示24小时
plt.grid(True)
plt.legend()
plt.show()
# 使用Matplotlib绘制条形图
plt.figure(figsize=(10, 6))
plt.bar(hours, counts, color='orange', label='404 Responses')
plt.title("Hourly 404 Response Code Counts")
plt.xlabel("Hour of the Day")
plt.ylabel("Count of 404 Responses")
plt.xticks(range(24)) # 显示24小时
plt.grid(True)
plt.legend()
plt.show()
# 结束SparkSession
spark.stop()
if __name__ == "__main__":
main()