web-analyze/1-1.py
fly6516 c48a91f11e refactor(1-1.py): 重构日志分析代码
- 重新编写日志解析逻辑,使用正则表达式匹配日志行
- 添加错误处理和日志文件为空时的处理逻辑- 优化 Top 10 最常访问的端点统计代码- 使用 f-string 改进代码可读性
- 添加 SparkContext 初始化和停止逻辑
2025-04-14 01:49:05 +08:00

49 lines
1.4 KiB
Python

import re
from pyspark import SparkContext
sc = SparkContext.getOrCreate()
LOG_PATTERN = re.compile(r'^(\S+) (\S+) (\S+) \[([\w:/]+\s[+-]\d{4})\] "(\S+) (\S+)\s*(\S*)\s?" (\d{3}) (\S+)')
def parse_log_line(line):
match = LOG_PATTERN.match(line)
if not match:
return None
content_size_str = match.group(9)
content_size = int(content_size_str) if content_size_str.isdigit() else 0
return {
'ip': match.group(1),
'user_identity': match.group(2),
'user_id': match.group(3),
'timestamp': match.group(4),
'method': match.group(5),
'endpoint': match.group(6),
'protocol': match.group(7),
'status_code': int(match.group(8)),
'content_size': content_size
}
logFile = "hdfs://master:9000/user/root/apache.access.log.PROJECT"
raw_logs = sc.textFile(logFile)
access_logs = raw_logs.map(parse_log_line).filter(lambda x: x is not None).cache()
# 加入一个保护,防止 access_logs 空时报错
if access_logs.isEmpty():
print("日志文件为空或解析失败")
else:
endpoint_counts = (access_logs
.map(lambda log: (log['endpoint'], 1))
.reduceByKey(lambda a, b: a + b)
.sortBy(lambda x: -x[1])
.take(10))
print("Top 10 most visited endpoints:")
for endpoint, count in endpoint_counts:
print(f"{endpoint}: {count} hits")
sc.stop()