import re from pyspark import SparkContext # 初始化 SparkContext sc = SparkContext.getOrCreate() # 日志匹配的正则表达式 LOG_PATTERN = re.compile( r'^(\S+) (\S+) (\S+) \[([\w:/]+\s[+-]\d{4})\] "(\S+) (\S+)\s*(\S*)\s?" (\d{3}) (\S+)' ) # 解析日志的函数 def parse_log_line(line): match = LOG_PATTERN.match(line) if not match: return None content_size_str = match.group(9) content_size = int(content_size_str) if content_size_str.isdigit() else 0 return { 'ip': match.group(1), 'user_identity': match.group(2), 'user_id': match.group(3), 'timestamp': match.group(4), 'method': match.group(5), 'endpoint': match.group(6), 'protocol': match.group(7), 'status_code': int(match.group(8)), 'content_size': content_size } def extract_day(log): # 时间格式为:10/Oct/2000:13:55:36 -0700 full_date = log['timestamp'] day = full_date.split('/')[0] # 只提取日 return day if __name__ == "__main__": # 加载日志文件 logFile = "hdfs://master:9000/user/root/apache.access.log.PROJECT" raw_logs = sc.textFile(logFile) # 解析并过滤有效日志 access_logs = raw_logs.map(parse_log_line).filter(lambda x: x is not None).cache() # 过滤 404 状态码的日志 error_404_logs = access_logs.filter(lambda log: log['status_code'] == 404).cache() # 每日 404 次数统计 errDateSorted = ( error_404_logs .map(lambda log: (extract_day(log), 1)) .reduceByKey(lambda a, b: a + b) .sortBy(lambda x: x[1], ascending=False) # 按次数降序排序 .cache() ) # 获取最多的五天 top_5_days = errDateSorted