import re from pyspark import SparkContext sc = SparkContext.getOrCreate() LOG_PATTERN = re.compile(r'^(\S+) (\S+) (\S+) \[([\w:/]+\s[+-]\d{4})\] "(\S+) (\S+)\s*(\S*)\s?" (\d{3}) (\S+)') def parse_log_line(line): match = LOG_PATTERN.match(line) if not match: return None content_size_str = match.group(9) content_size = int(content_size_str) if content_size_str.isdigit() else 0 return { 'ip': match.group(1), 'user_identity': match.group(2), 'user_id': match.group(3), 'timestamp': match.group(4), 'method': match.group(5), 'endpoint': match.group(6), 'protocol': match.group(7), 'status_code': int(match.group(8)), 'content_size': content_size } logFile = "hdfs://master:9000/user/root/apache.access.log.PROJECT" raw_logs = sc.textFile(logFile) access_logs = raw_logs.map(parse_log_line).filter(lambda x: x is not None).cache() # 加入一个保护,防止 access_logs 空时报错 if access_logs.isEmpty(): print("日志文件为空或解析失败") else: endpoint_counts = (access_logs .map(lambda log: (log['endpoint'], 1)) .reduceByKey(lambda a, b: a + b) .sortBy(lambda x: -x[1]) .take(10)) print("Top 10 most visited endpoints:") for endpoint, count in endpoint_counts: print(f"{endpoint}: {count} hits") sc.stop()