import re from pyspark import SparkContext # 初始化 SparkContext sc = SparkContext.getOrCreate() # 日志匹配的正则表达式 LOG_PATTERN = re.compile( r'^(\S+) (\S+) (\S+) \[([\w:/]+\s[+-]\d{4})\] "(\S+) (\S+)\s*(\S*)\s?" (\d{3}) (\S+)' ) # 解析日志的函数 def parse_log_line(line): match = LOG_PATTERN.match(line) if not match: return None content_size_str = match.group(9) content_size = int(content_size_str) if content_size_str.isdigit() else 0 return { 'ip': match.group(1), 'user_identity': match.group(2), 'user_id': match.group(3), 'timestamp': match.group(4), 'method': match.group(5), 'endpoint': match.group(6), 'protocol': match.group(7), 'status_code': int(match.group(8)), 'content_size': content_size } if __name__ == "__main__": # 加载日志文件 logFile = "hdfs://master:9000/user/root/apache.access.log.PROJECT" raw_logs = sc.textFile(logFile) # 解析并过滤有效日志 access_logs = raw_logs.map(parse_log_line).filter(lambda x: x is not None).cache() # 提取状态码为 404 的日志 error_404_logs = access_logs.filter(lambda log: log['status_code'] == 404).cache() # 计算触发 404 错误最多的端点 top_20_404_endpoints = ( error_404_logs .map(lambda log: (log['endpoint'], 1)) .reduceByKey(lambda a, b: a + b) .takeOrdered(20, key=lambda x: -x[1]) ) # 输出结果 print("前 20 个触发 404 错误最多的端点:") for i, (endpoint, count) in enumerate(top_20_404_endpoints): print("{}: {} => {} 次 404 错误".format(i + 1, endpoint, count)) # 停止 Spark sc.stop()