project-elec-py/monthly_total_power.py

113 lines
3.4 KiB
Python
Raw Normal View History

2025-05-11 10:58:02 +00:00
import sys
from datetime import datetime, timedelta
from pyspark.sql import SparkSession
from pyspark.sql.functions import col, sum as _sum, dayofmonth, date_format
import happybase
import matplotlib.pyplot as plt
def convert_date(date_string):
return f"{date_string[:4]}-{date_string[4:6]}-{date_string[6:]}"
def convert_time(time_string):
return f"{time_string[:2]}:{time_string[2:4]}:{time_string[4:]}"
def get_region_code(dateline):
year = dateline[:4]
region_num = (int(year) - 2006) % 6
return str(region_num)
def get_month_dates(input_date):
date = datetime.strptime(input_date, "%Y%m")
start_of_month = date.replace(day=1)
next_month = start_of_month.replace(month=start_of_month.month % 12 + 1,
year=start_of_month.year + (start_of_month.month // 12))
end_of_month = next_month - timedelta(days=1)
start_of_month_str = start_of_month.strftime("%Y%m%d")
end_of_month_str = end_of_month.strftime("%Y%m%d")
return start_of_month_str, end_of_month_str
def get_double_rowkey(input_date):
split = "_"
start_date, stop_date = get_month_dates(input_date)
start_datetime = start_date + "000000"
stop_datetime = stop_date + "235900"
start_region_code = get_region_code(start_datetime)
stop_region_code = get_region_code(stop_datetime)
return start_region_code + split + start_datetime, stop_region_code + split + stop_datetime
spark = SparkSession.builder \
.appName("HBaseSparkIntegration") \
.getOrCreate()
hbase_host = "100.64.0.3"
hbase_table = "elec:eleclog"
connection = happybase.Connection(hbase_host)
table = connection.table(hbase_table)
column_family = "info"
input_date = input("input date (200701):")
# input_date = "20061230"
start_row, stop_row = get_double_rowkey(input_date)
print(start_row, stop_row)
def fetch_hbase_data(table):
none_num = 0
rows = []
for key, data in table.scan(row_start=start_row.encode("utf-8"), row_stop=stop_row.encode("utf-8")):
date = data[f'{column_family}:date'.encode('utf-8')].decode('utf-8')
time = data[f'{column_family}:time'.encode('utf-8')].decode('utf-8')
value = data[f'{column_family}:globalActivePower'.encode('utf-8')].decode('utf-8')
if value == "?":
none_num += 1
continue
global_active_power = float(value)
datetime = f"{convert_date(date)} {convert_time(time)}"
rows.append((datetime, global_active_power))
return rows, none_num
hbase_data, none_num = fetch_hbase_data(table)
if len(hbase_data) == 0:
print("No data searched, please confirm your input")
sys.exit(0)
if none_num / len(hbase_data) >= 0.20:
print("This batch data has too many nulls to be of analytical value ")
sys.exit(0)
columns = ["datetime", "globalActivePower"]
df = spark.createDataFrame(hbase_data, columns)
df = df.withColumn("date", date_format(col("datetime"), "yyyy-MM-dd"))
daily_total_power = df.groupBy("date").agg((_sum("globalActivePower") / (60*24)).alias("daily_total_power"))
daily_total_power_pd = daily_total_power.orderBy("date").toPandas()
plt.figure(figsize=(10, 6))
plt.plot(daily_total_power_pd['date'], daily_total_power_pd['daily_total_power'], marker='o')
plt.title('Daily Power Consumption for One Mouth')
plt.xlabel('Date')
plt.ylabel('Total Power Consumption (kW)')
plt.grid(True)
plt.xticks(rotation=45)
plt.tight_layout()
plt.show()
spark.stop()