feat: wordcount full code
This commit is contained in:
commit
ff3e4c7b1b
3
.idea/.gitignore
vendored
Normal file
3
.idea/.gitignore
vendored
Normal file
@ -0,0 +1,3 @@
|
||||
# Default ignored files
|
||||
/shelf/
|
||||
/workspace.xml
|
1
data/file1.txt
Normal file
1
data/file1.txt
Normal file
@ -0,0 +1 @@
|
||||
Hello World
|
1
data/file2.txt
Normal file
1
data/file2.txt
Normal file
@ -0,0 +1 @@
|
||||
Hello MapReduce
|
16
pom.xml
Normal file
16
pom.xml
Normal file
@ -0,0 +1,16 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<project xmlns="http://maven.apache.org/POM/4.0.0"
|
||||
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
|
||||
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
|
||||
<modelVersion>4.0.0</modelVersion>
|
||||
|
||||
<groupId>org.example</groupId>
|
||||
<artifactId>WordCount</artifactId>
|
||||
<version>1.0-SNAPSHOT</version>
|
||||
|
||||
<properties>
|
||||
<maven.compiler.source>8</maven.compiler.source>
|
||||
<maven.compiler.target>8</maven.compiler.target>
|
||||
</properties>
|
||||
|
||||
</project>
|
37
src/main/java/WcMap.java
Normal file
37
src/main/java/WcMap.java
Normal file
@ -0,0 +1,37 @@
|
||||
import java.io.IOException;
|
||||
import org.apache.commons.lang.StringUtils;
|
||||
import org.apache.hadoop.io.LongWritable;
|
||||
import org.apache.hadoop.io.Text;
|
||||
import org.apache.hadoop.mapreduce.Mapper;
|
||||
/***
|
||||
*
|
||||
* @author Administrator
|
||||
* 1:4个泛型中,前两个是指定mapper输入数据的类型,KEYIN是输入的key的类型,VALUEIN是输入的value的值
|
||||
* KEYOUT是输入的key的类型,VALUEOUT是输入的value的值
|
||||
* 2:map和reduce的数据输入和输出都是以key-value的形式封装的。
|
||||
* 3:默认情况下,框架传递给我们的mapper的输入数据中,key是要处理的文本中一行的起始偏移量,这一行的内容作为value
|
||||
* 4:key-value数据是在网络中进行传递,节点和节点之间互相传递,在网络之间传输就需要序列化,但是jdk自己的序列化很冗余
|
||||
* 所以使用hadoop自己封装的数据类型,而不要使用jdk自己封装的数据类型;
|
||||
* Long--->LongWritable
|
||||
* String--->Text
|
||||
*/
|
||||
public class WcMap extends Mapper<LongWritable, Text, Text, LongWritable>{
|
||||
//重写map这个方法
|
||||
//mapreduce框架每读一行数据就调用一次该方法
|
||||
@Override
|
||||
protected void map(LongWritable key, Text value, Context context)
|
||||
throws IOException, InterruptedException {
|
||||
//具体业务逻辑就写在这个方法体中,而且我们业务要处理的数据已经被框架传递进来,在方法的参数中key-value
|
||||
//key是这一行数据的起始偏移量,value是这一行的文本内容
|
||||
|
||||
//1:
|
||||
String str = value.toString();
|
||||
//2:切分单词,空格隔开,返回切分开的单词
|
||||
String[] words = StringUtils.split(str," ");
|
||||
//3:遍历这个单词数组,输出为key-value的格式,将单词发送给reduce
|
||||
for(String word : words){
|
||||
//输出的key是Text类型的,value是LongWritable类型的
|
||||
context.write(new Text(word), new LongWritable(1));
|
||||
}
|
||||
}
|
||||
}
|
31
src/main/java/WcReduce.java
Normal file
31
src/main/java/WcReduce.java
Normal file
@ -0,0 +1,31 @@
|
||||
import java.io.IOException;
|
||||
import org.apache.hadoop.io.LongWritable;
|
||||
import org.apache.hadoop.io.Text;
|
||||
import org.apache.hadoop.mapreduce.Reducer;
|
||||
/***
|
||||
*
|
||||
* @author Administrator
|
||||
* 1:reduce的四个参数,第一个key-value是map的输出作为reduce的输入,第二个key-value是输出单词和次数,所以
|
||||
* 是Text,LongWritable的格式;
|
||||
*/
|
||||
public class WcReduce extends Reducer<Text, LongWritable, Text, LongWritable> {
|
||||
//继承Reducer之后重写reduce方法
|
||||
//第一个参数是key,第二个参数是集合。
|
||||
//框架在map处理完成之后,将所有key-value对缓存起来,进行分组,然后传递一个组<key,valus{}>,调用一次reduce方法
|
||||
//<hello,{1,1,1,1,1,1.....}>
|
||||
@Override
|
||||
protected void reduce(Text key, Iterable<LongWritable> values, Context context)
|
||||
throws IOException, InterruptedException {
|
||||
//将values进行累加操作,进行计数
|
||||
long count = 0;
|
||||
//遍历value的list,进行累加求和
|
||||
for (LongWritable value : values) {
|
||||
|
||||
count += value.get();
|
||||
}
|
||||
|
||||
//输出这一个单词的统计结果
|
||||
//输出放到hdfs的某一个目录上面,输入也是在hdfs的某一个目录
|
||||
context.write(key, new LongWritable(count));
|
||||
}
|
||||
}
|
79
src/main/java/WcRunner.java
Normal file
79
src/main/java/WcRunner.java
Normal file
@ -0,0 +1,79 @@
|
||||
import java.io.IOException;
|
||||
import org.apache.hadoop.conf.Configuration;
|
||||
import org.apache.hadoop.fs.Path;
|
||||
import org.apache.hadoop.io.LongWritable;
|
||||
import org.apache.hadoop.io.Text;
|
||||
import org.apache.hadoop.mapreduce.Job;
|
||||
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
|
||||
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
|
||||
import java.util.Scanner;
|
||||
import org.apache.hadoop.fs.FSDataInputStream;
|
||||
import org.apache.hadoop.fs.FileSystem;
|
||||
import java.net.URI;
|
||||
/***
|
||||
* 1:用来描述一个特定的作业
|
||||
* 比如,该作业使用哪个类作为逻辑处理中的map,那个作为reduce
|
||||
* 2:还可以指定该作业要处理的数据所在的路径
|
||||
* 还可以指定改作业输出的结果放到哪个路径
|
||||
* @author Administrator
|
||||
*
|
||||
*/
|
||||
public class WcRunner{
|
||||
public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException {
|
||||
//创建配置文件
|
||||
Configuration conf = new Configuration();
|
||||
//获取一个作业
|
||||
Job job = Job.getInstance(conf);
|
||||
|
||||
//设置整个job所用的那些类在哪个jar包
|
||||
job.setJarByClass(WcRunner.class);
|
||||
|
||||
//本job使用的mapper和reducer的类
|
||||
job.setMapperClass(WcMap.class);
|
||||
job.setReducerClass(WcReduce.class);
|
||||
|
||||
//指定reduce的输出数据key-value类型
|
||||
job.setOutputKeyClass(Text.class);
|
||||
job.setOutputValueClass(LongWritable.class);
|
||||
|
||||
|
||||
//指定mapper的输出数据key-value类型
|
||||
job.setMapOutputKeyClass(Text.class);
|
||||
job.setMapOutputValueClass(LongWritable.class);
|
||||
|
||||
Scanner sc = new Scanner(System.in);
|
||||
System.out.print("inputPath:");
|
||||
String inputPath = sc.next();
|
||||
System.out.print("outputPath:");
|
||||
String outputPath = sc.next();
|
||||
|
||||
//指定要处理的输入数据存放路径
|
||||
FileInputFormat.setInputPaths(job, new Path("hdfs://master:9000"+inputPath));
|
||||
|
||||
//指定处理结果的输出数据存放路径
|
||||
FileOutputFormat.setOutputPath(job, new Path("hdfs://master:9000"+outputPath));
|
||||
|
||||
//将job提交给集群运行
|
||||
job.waitForCompletion(true);
|
||||
|
||||
//输出结果
|
||||
|
||||
try {
|
||||
FileSystem fs = FileSystem.get(new URI("hdfs://master:9000"), new Configuration());
|
||||
Path srcPath = new Path(outputPath+"/part-r-00000");
|
||||
|
||||
FSDataInputStream is = fs.open(srcPath);
|
||||
System.out.println("Results:");
|
||||
while(true) {
|
||||
String line = is.readLine();
|
||||
if(line == null) {
|
||||
break;
|
||||
}
|
||||
System.out.println(line);
|
||||
}
|
||||
is.close();
|
||||
}catch(Exception e) {
|
||||
e.printStackTrace();
|
||||
}
|
||||
}
|
||||
}
|
Loading…
Reference in New Issue
Block a user