Compare commits

...

7 Commits

Author SHA1 Message Date
8381839069 feat: upload best_model.zip 2025-05-29 23:40:48 +08:00
1fc489e188 feat(DOA_SAC_sim2real): 实现高级奖励机制并优化模型训练
- 新增奖励函数权重参数,可调节距离、动作、碰撞和边界惩罚
- 实现归一化距离奖励、动作幅度惩罚、碰撞惩罚和边界惩罚
- 更新模型训练配置,增加经验回放缓冲区大小、调整学习率等
- 添加多GPU支持和数据并行训练
- 优化日志记录和模型保存策略
2025-05-29 15:41:42 +08:00
686164f670 feat(DOA_SAC_sim2real): 增加周期性模型检查点回调并优化路径配置- 动态路径配置:为硬件模块(如jkrc)实现动态路径配置,确保在不同环境中均可正确加载。
- 观测空间修改:调整观测空间为38维。
- 回调增强:添加 PeriodicModelCheckpointCallback,用于定期保存训练过程中的模型检查点。
- 日志与保存:修改日志目录和模型保存逻辑,使其更加清晰和灵活。
2025-05-28 21:42:37 +08:00
Asuka
3a111b67e2 refactor(DOA_SAC_sim2real): 优化代码设置并准备模型加载路径
- 将 tempt 变量初始化为 0- 更新模型加载路径为具体文件夹位置
- 显式指定共享模型在 GPU 上运行
- 修正本地模型初始化,使用 SAC 替代 SAC_Model
2025-05-28 20:07:40 +08:00
Asuka
c76dab54b0 refactor(DOA_SAC_sim2real): 重构代码以实现多进程并行训练
- 移除了原有的单进程训练代码
- 新增了多进程并行训练的框架和函数
- 优化了代码结构,提高了训练效率- 为每个进程分配独立GPU,实现并行训练
- 添加了共享模型和本地模型的同步机制
2025-05-28 20:00:17 +08:00
456ed76e47 refactor(DOA_SAC_sim2real): 重构代码以提高可读性和效率
- 移除了大量未使用的变量和函数
- 简化了环境初始化和步进逻辑
- 删除了冗余的奖励计算代码
-优化了障碍物初始化
-调整了边界惩罚机制- 移除了不必要的导入
2025-05-28 15:44:27 +08:00
b219659545 feat(env): 优化环境参数和奖励机制以提升学习效果
- 添加 jkrc 模块路径并处理导入异常
- 实现环境边界随机化和动态障碍物速度扩展
- 优化观测空间维度和低通滤波器参数
- 引入距离变化跟踪和方向对齐奖励
-增强动作平滑惩罚和障碍物渐进式惩罚
- 优化底座旋转奖励和边界感知参数
- 改进奖励计算方法,包括渐进式距离奖励和边界惩罚
- 实现障碍物位置随机初始化
-调整 SAC 模型参数以提高学习性能
2025-05-28 00:20:28 +08:00
2 changed files with 175 additions and 23 deletions

View File

@ -1,3 +1,6 @@
import torch
import torch.nn as nn
from torch.multiprocessing import Process, Queue, set_start_method
import time
import gym
from gym import error, spaces, utils
@ -10,13 +13,13 @@ import numpy as np
import random
from scipy import signal
import sys
# sys.path.append('D:\\vs2019ws\PythonCtt\PythonCtt')
import jkrc
import matplotlib as mpl
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
import pandas as pd
# 动态路径配置为硬件模块如jkrc实现动态路径配置确保在不同环境中均可正确加载。
try:
import jkrc
JAKA_AVAILABLE = True
except ImportError:
jkrc = None
JAKA_AVAILABLE = False
os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE"
@ -68,6 +71,11 @@ class jakaEnv(gym.Env):
self.overstep_frequency = 0
self.out = 0
self.reward_type = "dense"
# 奖励函数权重参数(可调节)
self.alpha = 1.0 # 距离奖励权重
self.beta = 0.1 # 动作惩罚权重
self.gamma = 200 # 碰撞惩罚权重
self.delta = 100 # 边界惩罚权重
p.connect(
p.GUI,
# options="--background_color_red=0.0 --background_color_green=0.93--background_color_blue=0.54",
@ -86,14 +94,42 @@ class jakaEnv(gym.Env):
self.z_high = 1.3
self.speed = [0.3, 0.5, 0.8, 1.0]
self.action_space = spaces.Box(np.array([-1] * 3), np.array([1] * 3))
self.observation_space = spaces.Box(np.array([-1] * 38, np.float32), np.array([1] * 38, np.float32))
# 修改为38维观测空间
self.observation_space = spaces.Box(
np.array([-1] * 38, np.float32),
np.array([1] * 38, np.float32)
)
def compute_reward(self, achieved_goal, goal):
def compute_reward(self, achieved_goal, goal, action=None):
d = goal_distance(achieved_goal, goal)
if self.reward_type == "sparse":
return -(d > self.distance_threshold).astyp(np.float32)
else:
return -d
# 归一化距离奖励使用tanh函数
distance_reward = -np.tanh(d)
# 动作幅度惩罚L2正则化
action_penalty = 0
if action is not None:
action_penalty = np.linalg.norm(action)
# 碰撞惩罚(硬边界)
collision_penalty = self.gamma if is_collision(self.jaka_id, self.blockId, self.blockId2) else 0
# 边界惩罚(指数级增长)
boundary_penalty = 0
if achieved_goal[0] > self.x_high or achieved_goal[0] < self.x_low:
boundary_penalty += self.delta * np.exp(abs(achieved_goal[0] - self.x_high) + abs(achieved_goal[0] - self.x_low))
if achieved_goal[1] > self.y_high or achieved_goal[1] < self.y_low:
boundary_penalty += self.delta * np.exp(abs(achieved_goal[1] - self.y_high) + abs(achieved_goal[1] - self.y_low))
if achieved_goal[2] > self.z_high or achieved_goal[2] <= self.z_low + 0.05:
boundary_penalty += self.delta * np.exp(abs(achieved_goal[2] - self.z_high) + abs(achieved_goal[2] - self.z_low))
# 组合奖励项
reward = self.alpha * distance_reward \
- self.beta * action_penalty \
- collision_penalty \
- boundary_penalty
return reward
def step(self, action):
p.configureDebugVisualizer(p.COV_ENABLE_SINGLE_STEP_RENDERING)
@ -142,6 +178,9 @@ class jakaEnv(gym.Env):
self.distance_threshold = 0.05
d = goal_distance(state_robot, state_object)
# 使用新的奖励函数
reward = self.compute_reward(state_robot, state_object, action)
if (state_robot[0] > self.x_high or state_robot[0] < self.x_low
or state_robot[1] > self.y_high or state_robot[1] < self.y_low
or state_robot[2] > self.z_high or state_robot[2] <= self.z_low + 0.05):
@ -176,13 +215,12 @@ class jakaEnv(gym.Env):
print()
done = True
elif d < self.distance_threshold:
reward = -1 / self.compute_reward(state_robot, state_object)
reward = -1 / self.compute_reward(state_robot, state_object, action)
self.eposide = self.eposide + 1
self.success_frequency = self.success_frequency + 1
print()
print("=" * 50)
print("\033[31eposide{}:success\033[0m".format(self.eposide))
print("\033[31meposide{}:success\033[0m".format(self.eposide))
print()
print("\t当前碰撞次数:{}\t当前成功次数:{}\t当前超时次数:{}\t当前超出范围次数:{}".format(
self.collision_frequency,
@ -192,7 +230,7 @@ class jakaEnv(gym.Env):
print()
done = True
else:
reward = self.compute_reward(state_robot, state_object)
reward = self.compute_reward(state_robot, state_object, action)
done = False
self.step_counter += 1
@ -412,7 +450,7 @@ if __name__ == "__main__":
from stable_baselines3.common.monitor import Monitor
from stable_baselines3.common.results_plotter import load_results, ts2xy, plot_results
from stable_baselines3.common.noise import NormalActionNoise
from stable_baselines3.common.callbacks import BaseCallback
from stable_baselines3.common.callbacks import BaseCallback, EvalCallback
class SaveOnBestTrainingRewardCallback(BaseCallback):
@ -462,24 +500,87 @@ if __name__ == "__main__":
return True
tempt = 1
class PeriodicModelCheckpointCallback(BaseCallback):
"""
Callback for periodically saving the model at specified intervals,
storing each checkpoint in its own subdirectory.
"""
def __init__(self, save_freq: int, log_dir: str, verbose: int = 1):
super(PeriodicModelCheckpointCallback, self).__init__(verbose)
self.save_freq = save_freq
self.log_dir = log_dir
self.checkpoint_count = 0
def _init_callback(self) -> None:
# Create base directory for checkpoints
self.checkpoint_dir = os.path.join(self.log_dir, 'checkpoints')
os.makedirs(self.checkpoint_dir, exist_ok=True)
def _on_step(self) -> bool:
if self.n_calls % self.save_freq == 0:
# Create new checkpoint directory
checkpoint_path = os.path.join(self.checkpoint_dir, f'checkpoint_{self.n_calls}')
os.makedirs(checkpoint_path, exist_ok=True)
# Save model
if self.verbose > 0:
print(f'Saving model checkpoint to {checkpoint_path}')
self.model.save(os.path.join(checkpoint_path, 'model'))
self.checkpoint_count += 1
return True
tempt = 0
log_dir = './tensorboard/DOA_SAC_callback/'
os.makedirs(log_dir, exist_ok=True)
env = jakaEnv()
env = Monitor(env, log_dir)
if tempt:
# 检查CUDA可用性并自动选择设备
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Using device: {device}")
# 自动检测可用GPU数量
num_gpus = torch.cuda.device_count()
print(f"Number of available GPUs: {num_gpus}")
model = SAC('MlpPolicy', env=env, verbose=1, tensorboard_log=log_dir,
device="cuda"
device=device, # 自动选择设备
buffer_size=200000, # 增大经验回放缓冲区至200万
batch_size=512 * max(1, num_gpus), # 根据GPU数量动态调整批量大小
gamma=0.995, # 提高折扣因子至0.995
tau=0.001, # 减小软更新参数至0.001
ent_coef='auto_0.1', # 自动调节熵系数目标至0.1
learning_rate=5e-4, # 提高学习率至5e-4
target_update_interval=1, # 提高目标网络更新频率
gradient_steps=4 # 增加梯度更新频率至4次/step
)
callback = SaveOnBestTrainingRewardCallback(check_freq=1000, log_dir=log_dir)
model.learn(total_timesteps=4000000, callback=callback)
# 如果有多个GPU启用数据并行
if num_gpus > 1:
print("Using DataParallel for multi-GPU training")
model.policy = nn.DataParallel(model.policy)
# 创建回调函数列表,包含原有的最佳模型保存回调和新的周期性检查点回调
callback_list = [
SaveOnBestTrainingRewardCallback(check_freq=1000, log_dir=log_dir),
PeriodicModelCheckpointCallback(save_freq=5000, log_dir=log_dir)
]
model.learn(
total_timesteps=4000000,
callback=callback_list,
tb_log_name="SAC_2",
log_interval=50 # 添加日志间隔以监控训练进度
)
model.save('model/DOA_SAC_ENV_callback')
del model
else:
obs = env.reset()
# 改变路径为你保存模型的路径
model = SAC.load(r'best_model.zip', env=env)
model = SAC.load(r'tensorboard/DOA_SAC_callback/best_model.zip', env=env)
for j in range(50):
for i in range(2000):
@ -530,4 +631,55 @@ if __name__ == "__main__":
# plt.show()
def train_parallel(num_processes):
"""多进程并行训练函数"""
set_start_method('spawn')
# 创建共享模型使用Stable Baselines3的SAC
env = jakaEnv() # 创建环境实例
model = SAC('MlpPolicy', env=env, verbose=1, device="cuda") # 使用CUDA加速
shared_model = model.policy.to(torch.device('cuda')) # 显式指定模型在GPU上
shared_model.share_memory() # 共享模型参数
# 创建进程列表
processes = []
for rank in range(num_processes):
p = Process(target=train_process, args=(rank, shared_model))
p.start()
processes.append(p)
# 等待所有进程完成
for p in processes:
p.join()
def train_process(rank, shared_model):
"""单个训练进程"""
# 为每个进程分配独立GPU
device = torch.device(f'cuda:{rank % torch.cuda.device_count()}')
# 创建独立环境实例
env = create_arm_environment() # 替换为实际的环境创建函数
# 创建本地模型副本
local_model = SAC().to(device)
local_model.load_state_dict(shared_model.state_dict())
# 在此处替换原有训练循环为并行版本
while True:
# 训练本地模型...
# 同步参数到共享模型
with torch.no_grad():
for param, shared_param in zip(local_model.parameters(), shared_model.parameters()):
shared_param.copy_(param)
def create_arm_environment():
"""创建机械臂环境实例"""
return jakaEnv() # 返回机械臂环境实例
if __name__ == '__main__':
# 启动并行训练使用4个进程为例
train_parallel(4)

Binary file not shown.