refactor(env): 优化 DOA_SAC_sim2real 脚本

- 修改了 URDF 文件路径
- 删除了冗余代码和注释
- 调整了代码格式和缩进,提高了可读性
- 更新了模型保存路径
This commit is contained in:
fly6516 2025-05-27 21:55:49 +08:00
parent 3d914c8c53
commit e3b17f5eb2

View File

@ -17,13 +17,16 @@ import matplotlib as mpl
from mpl_toolkits.mplot3d import Axes3D from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt import matplotlib.pyplot as plt
import pandas as pd import pandas as pd
os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE"
os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE"
MAX_EPISODE_LEN = 20 * 100 MAX_EPISODE_LEN = 20 * 100
x = [] x = []
y = [] y = []
z = [] z = []
#运动模式
# 运动模式
# PI=3.1415926 # PI=3.1415926
# ABS = 0 # 绝对运动 # ABS = 0 # 绝对运动
# INCR = 1 # 增量运动 # INCR = 1 # 增量运动
@ -122,12 +125,9 @@ class jakaEnv(gym.Env):
p.resetBaseVelocity(self.blockId, linearVelocity=[0, random.choice(self.speed), 0]) p.resetBaseVelocity(self.blockId, linearVelocity=[0, random.choice(self.speed), 0])
p.stepSimulation() p.stepSimulation()
# robot.servo_move_enable(True) # robot.servo_move_enable(True)
# robot.servo_p(cartesian_pose=[dx*100, dy*100, dz*50, 0, 0, 0], move_mode=1) # robot.servo_p(cartesian_pose=[dx*100, dy*100, dz*50, 0, 0, 0], move_mode=1)
# time.sleep(0.008) # time.sleep(0.008)
state_object, state_object_orienation = p.getBasePositionAndOrientation(self.objectId) state_object, state_object_orienation = p.getBasePositionAndOrientation(self.objectId)
twist_object, twist_object_orienation = p.getBaseVelocity(self.objectId) twist_object, twist_object_orienation = p.getBaseVelocity(self.objectId)
@ -282,7 +282,7 @@ class jakaEnv(gym.Env):
reset_realposes = [0.8, 2.4, 1.3, 1, -1.57, 0] reset_realposes = [0.8, 2.4, 1.3, 1, -1.57, 0]
# 改变路径为你机械臂的URDF文件路径 # 改变路径为你机械臂的URDF文件路径
self.jaka_id = p.loadURDF( self.jaka_id = p.loadURDF(
r"D:\Python\robot_DRL\env\lib64\urdf\jaka_description\urdf\jaka_description.urdf", "urdf/jaka_description/urdf/jaka_description.urdf",
basePosition=[0, 0.5, 0.65], basePosition=[0, 0.5, 0.65],
baseOrientation=p.getQuaternionFromEuler([0, 0, 3.14]), baseOrientation=p.getQuaternionFromEuler([0, 0, 3.14]),
useFixedBase=True, useFixedBase=True,
@ -308,7 +308,7 @@ class jakaEnv(gym.Env):
block_vel_range = np.array(self.speed) block_vel_range = np.array(self.speed)
block_loc = np.array([0, 0, 0]) block_loc = np.array([0, 0, 0])
block_rel_pos = np.array([0, 0, 0]) block_rel_pos = np.array([0, 0, 0])
block2_pos = np.array([0.6, 0.66, 0.43]) block2_pos = np.array([0.6, 0.66, 0.43])
obs = np.concatenate( obs = np.concatenate(
[ [
@ -425,6 +425,7 @@ if __name__ == "__main__":
It must contains the file created by the ``Monitor`` wrapper. It must contains the file created by the ``Monitor`` wrapper.
:param verbose: Verbosity level. :param verbose: Verbosity level.
""" """
def __init__(self, check_freq: int, log_dir: str, verbose: int = 1): def __init__(self, check_freq: int, log_dir: str, verbose: int = 1):
super(SaveOnBestTrainingRewardCallback, self).__init__(verbose) super(SaveOnBestTrainingRewardCallback, self).__init__(verbose)
self.check_freq = check_freq self.check_freq = check_freq
@ -440,32 +441,34 @@ if __name__ == "__main__":
def _on_step(self) -> bool: def _on_step(self) -> bool:
if self.n_calls % self.check_freq == 0: if self.n_calls % self.check_freq == 0:
# Retrieve training reward # Retrieve training reward
x, y = ts2xy(load_results(self.log_dir), 'timesteps') x, y = ts2xy(load_results(self.log_dir), 'timesteps')
if len(x) > 0: if len(x) > 0:
# Mean training reward over the last 100 episodes # Mean training reward over the last 100 episodes
mean_reward = np.mean(y[-100:]) mean_reward = np.mean(y[-100:])
if self.verbose > 0: if self.verbose > 0:
print(f"Num timesteps: {self.num_timesteps}") print(f"Num timesteps: {self.num_timesteps}")
print(f"Best mean reward: {self.best_mean_reward:.2f} - Last mean reward per episode: {mean_reward:.2f}") print(
f"Best mean reward: {self.best_mean_reward:.2f} - Last mean reward per episode: {mean_reward:.2f}")
# New best model, you could save the agent here # New best model, you could save the agent here
if mean_reward > self.best_mean_reward: if mean_reward > self.best_mean_reward:
self.best_mean_reward = mean_reward self.best_mean_reward = mean_reward
# Example for saving best model # Example for saving best model
if self.verbose > 0: if self.verbose > 0:
print(f"Saving new best model to {self.save_path}") print(f"Saving new best model to {self.save_path}")
self.model.save(self.save_path) self.model.save(self.save_path)
return True return True
tempt = 1 tempt = 1
log_dir = './tensorboard/DOA_SAC_callback/' log_dir = './tensorboard/DOA_SAC_callback/'
os.makedirs(log_dir, exist_ok=True) os.makedirs(log_dir, exist_ok=True)
env = jakaEnv() env = jakaEnv()
env = Monitor(env, log_dir) env = Monitor(env, log_dir)
if tempt: if tempt:
model = SAC('MlpPolicy', env=env, verbose=1, tensorboard_log=log_dir, model = SAC('MlpPolicy', env=env, verbose=1, tensorboard_log=log_dir,
device="cuda" device="cuda"
) )
callback = SaveOnBestTrainingRewardCallback(check_freq=1000, log_dir=log_dir) callback = SaveOnBestTrainingRewardCallback(check_freq=1000, log_dir=log_dir)
@ -476,8 +479,7 @@ if __name__ == "__main__":
else: else:
obs = env.reset() obs = env.reset()
# 改变路径为你保存模型的路径 # 改变路径为你保存模型的路径
model = SAC.load(r'C:\Users\fly\PycharmProjects\RL-PowerTracking-new\best_model.zip', env=env) model = SAC.load(r'best_model.zip', env=env)
for j in range(50): for j in range(50):
for i in range(2000): for i in range(2000):
@ -498,7 +500,6 @@ if __name__ == "__main__":
break break
break break
# 三维 # 三维
# fig1 = plt.figure("机械臂运行轨迹") # fig1 = plt.figure("机械臂运行轨迹")
# ax = fig1.add_subplot(projection="3d") # 三维图形 # ax = fig1.add_subplot(projection="3d") # 三维图形