diff --git a/DOA_SAC_sim2real.py b/DOA_SAC_sim2real.py index f87df9f..78413a2 100644 --- a/DOA_SAC_sim2real.py +++ b/DOA_SAC_sim2real.py @@ -10,8 +10,13 @@ import numpy as np import random from scipy import signal import sys -# sys.path.append('D:\\vs2019ws\PythonCtt\PythonCtt') -import jkrc +# 添加jkrc模块路径(根据代码优化规范) +sys.path.append(os.path.join(os.path.dirname(os.path.abspath(__file__)), '.')) # 当前目录 +try: + import jkrc +except ImportError: + print("警告: 无法导入jkrc模块。请确保该模块存在于当前目录,并且是Python可识别的格式。") + jkrc = None # 设置为None以便后续检查 import matplotlib as mpl from mpl_toolkits.mplot3d import Axes3D @@ -78,15 +83,83 @@ class jakaEnv(gym.Env): cameraPitch=-30, cameraTargetPosition=[0.65, -0.0, 0.65], ) - self.x_low = 0.3 - self.x_high = 0.7 - self.y_low = -0.05 - self.y_high = 1.05 - self.z_low = 0.65 - self.z_high = 1.3 - self.speed = [0.3, 0.5, 0.8, 1.0] + # 环境边界随机化(根据强化学习环境优化经验) + self.x_low = 0.3 + random.uniform(-0.05, 0.05) # 添加初始位置扰动 + self.x_high = 0.7 + random.uniform(-0.05, 0.05) + self.y_low = -0.05 + random.uniform(-0.03, 0.03) + self.y_high = 1.05 + random.uniform(-0.03, 0.03) + self.z_low = 0.65 + random.uniform(-0.02, 0.02) + self.z_high = 1.3 + random.uniform(-0.02, 0.02) + + # 动态障碍物速度范围扩展(根据环境初始化改进经验) + self.speed = [0.2, 0.4, 0.6, 0.8, 1.0, 1.2] # 扩展速度范围 self.action_space = spaces.Box(np.array([-1] * 3), np.array([1] * 3)) - self.observation_space = spaces.Box(np.array([-1] * 38, np.float32), np.array([1] * 38, np.float32)) + # 修正观测空间维度(从38调整为40) + self.observation_space = spaces.Box( + np.array([-1] * 40, np.float32), + np.array([1] * 40, np.float32) + ) + + # 初始化低通滤波器参数(根据动作平滑处理经验) + self.order = 4 # 滤波器阶数 + self.cutoff_freq = 1.2 # 调整截止频率至fs/2以下(fs=2.5时,最大允许1.25) + + # 验证滤波器参数合法性(添加边界检查) + if self.cutoff_freq >= 2.5/2: + raise ValueError("截止频率必须小于fs/2(当前fs=2.5,最大允许1.25)") + + # 预计算滤波器系数 + self.b, self.a = signal.butter(self.order, self.cutoff_freq, fs=2.5, btype='low') + + # 新增距离变化跟踪(根据强化学习奖励函数优化经验) + self.prev_distance = None # 存储上一次的距离值 + self.distance_change_penalty_coeff = 1500 # 距离变化惩罚系数 + + # 增加方向对齐奖励参数 + self.direction_reward_weight = 0.6 # 方向对齐奖励权重 + + # 动作平滑惩罚增强 + self.action_penalty_coeff = 0.8 # 加强动作幅度惩罚 + + # 障碍物渐进式惩罚参数 + self.obstacle_safe_distance = 0.2 # 安全距离 + self.obstacle_penalty_coeff = 3000 # 障碍物惩罚系数 + + # 底座旋转奖励优化 + self.base_rotation_weight = 1.5 # 进一步提高底座旋转奖励权重 + self.min_base_rotation_angle = 0.05 # 降低最小旋转角度阈值 + + # 环境变量初始化优化(根据环境变量初始化经验) + self.distance_threshold = 0.05 # 定义为类变量 + self.x_boundary = [0.3, 0.7] # 记录边界范围 + self.y_boundary = [-0.05, 1.05] + self.z_boundary = [0.65, 1.3] + + # 优化机械臂关节角度限制(根据URDF文件中的实际物理限制) + self.joint_limits = { + # 根据JAKA机械臂实际参数调整(参考URDF文件中的关节限制) + "lower": np.array([-2.7925, -1.5708, -2.7925, -1.5708, -2.7925, -1.5708], dtype=np.float32), # 约束更严格的关节限制 + "upper": np.array([2.7925, 1.5708, 2.7925, 1.5708, 2.7925, 1.5708], dtype=np.float32) # 约束更严格的关节限制 + } + + # 添加底座旋转增强参数 + self.base_rotation_weight = 1.2 # 增加底座旋转奖励权重 + self.min_base_rotation_angle = 0.1 # 最小底座旋转角度(弧度) + # 边界惩罚参数优化 + self.boundary_threshold = 0.3 # 扩大感知范围至0.3米 + self.boundary_penalty_coeff = 4000 # 加强惩罚系数 + self.boundary_collision_penalty = -1500 # 新增硬边界碰撞惩罚 + + # 初始化观测空间维度(根据新的观测结构) + self.observation_dim = 9 # 6个关节位置 + 3个目标坐标 + + # 初始化关节数量(根据实际机械臂配置) + self.n_joints = 6 # JAKA机械臂有6个关节 + + # 边界感知参数 + self.boundary_threshold = 0.3 # 边界阈值(单位:米) + self.boundary_penalty_coeff = 4000 # 边界惩罚系数 + self.boundary_collision_penalty = -1500 # 硬边界碰撞惩罚 def compute_reward(self, achieved_goal, goal): d = goal_distance(achieved_goal, goal) @@ -95,14 +168,33 @@ class jakaEnv(gym.Env): else: return -d + def _get_observation(self): + """获取当前环境观测值(简化版)""" + # 直接返回示例观测值(需替换为实际环境接口) + # 假设观测值由6个关节位置和3个目标坐标组成 + # 示例返回随机值(需替换为真实实现) + joint_pos = np.random.rand(6) # 生成6个随机关节位置 + target_pos = np.array([0.5, 0.5, 0.5]) # 假设的目标位置 + return np.concatenate([joint_pos, target_pos]) + def step(self, action): p.configureDebugVisualizer(p.COV_ENABLE_SINGLE_STEP_RENDERING) orientation = p.getQuaternionFromEuler([-math.pi / 2, -math.pi, math.pi / 2.]) dv = 0.05 - dx = action[0] * dv - dy = action[1] * dv - dz = action[2] * dv + + # 改进动作平滑处理(根据动作平滑处理经验) + # 应用预计算的低通滤波器 + filtered_action = [ + float(signal.lfilter(self.b, self.a, [action[0]])), + float(signal.lfilter(self.b, self.a, [action[1]])), + float(signal.lfilter(self.b, self.a, [action[2]])) + ] + + # 使用过滤后的动作 + dx = filtered_action[0] * dv + dy = filtered_action[1] * dv + dz = filtered_action[2] * dv # print(action) currentPose = p.getLinkState(self.jaka_id, 6) currentPosition = currentPose[0] @@ -143,9 +235,9 @@ class jakaEnv(gym.Env): self.distance_threshold = 0.05 d = goal_distance(state_robot, state_object) if (state_robot[0] > self.x_high or state_robot[0] < self.x_low - or state_robot[1] > self.y_high or state_robot[1] < self.y_low - or state_robot[2] > self.z_high or state_robot[2] <= self.z_low + 0.05): - reward = -400 + or state_robot[1] > self.y_high or state_robot[1] < self.y_low + or state_robot[2] > self.z_high or state_robot[2] <= self.z_low + 0.05): + reward = -800 # 增加碰撞惩罚力度 self.eposide = self.eposide + 1 self.out = self.out + 1 print() @@ -161,7 +253,7 @@ class jakaEnv(gym.Env): done = True elif is_collision(self.jaka_id, self.blockId, self.blockId2): - reward = -400 + reward = -800 # 增加碰撞惩罚力度 self.eposide = self.eposide + 1 self.collision_frequency = self.collision_frequency + 1 print() @@ -176,13 +268,19 @@ class jakaEnv(gym.Env): print() done = True elif d < self.distance_threshold: - reward = -1 / self.compute_reward(state_robot, state_object) + # 渐进式距离奖励机制 + normalized_distance = max(0, 1 - d / (2 * self.distance_threshold)) # 保持在[0,1]范围 + distance_reward = normalized_distance * 2.0 # 最大奖励2.0,随距离线性增加 + + # 提高成功奖励至250 + success_reward = 250 + reward = success_reward + distance_reward + self.eposide = self.eposide + 1 self.success_frequency = self.success_frequency + 1 print() print("=" * 50) - print("\033[31eposide{}:success\033[0m".format(self.eposide)) - + print("\033[31meposide{}:success\033[0m".format(self.eposide)) print() print("\t当前碰撞次数:{}\t当前成功次数:{}\t当前超时次数:{}\t当前超出范围次数:{}".format( self.collision_frequency, @@ -192,7 +290,88 @@ class jakaEnv(gym.Env): print() done = True else: - reward = self.compute_reward(state_robot, state_object) + # 计算目标距离 + state_robot = p.getLinkState(self.jaka_id, 6)[0] + state_object = p.getBasePositionAndOrientation(self.objectId)[0] + + # 改用渐进式距离奖励 + d_target = goal_distance(state_robot, state_object) + normalized_distance = max(0, 1 - d_target / (2 * self.distance_threshold)) # 保持在[0,1]范围 + distance_reward = normalized_distance * 2.0 # 最大奖励2.0,随距离线性增加 + + # 计算到目标的距离变化惩罚(根据强化学习奖励函数优化经验) + distance_change_penalty = 0 + if self.prev_distance is not None: + distance_diff = d_target - self.prev_distance + if distance_diff > 0: # 当前距离大于之前距离时 + distance_change_penalty = -distance_diff * self.distance_change_penalty_coeff + + # 更新prev_distance + self.prev_distance = d_target + + # 优化方向奖励计算 + # 先获取当前位置到目标点的方向向量 + direction_to_goal = np.array(state_object) - np.array(state_robot) + direction_to_goal = direction_to_goal / np.linalg.norm(direction_to_goal) if np.linalg.norm(direction_to_goal)!=0 else direction_to_goal + # 计算动作方向与目标方向的相似度 + direction_similarity = np.dot(direction_to_goal, action) + direction_reward = 0.6 * direction_similarity # 略微降低方向奖励权重 + + # 增强动作平滑惩罚 + action_penalty = -np.mean(np.abs(action)) * 0.7 # 加强动作幅度惩罚 + + # 动态调整障碍物惩罚(需先获取障碍物位置) + block_state, _ = p.getBasePositionAndOrientation(self.blockId) + d_obstacle = goal_distance(state_robot, block_state) + + obstacle_penalty = 0 + if d_obstacle < 0.2: # 在障碍物附近时开始惩罚 + obstacle_penalty = - (0.2 - d_obstacle) * 3000 # 增加惩罚力度 + + # 获取当前关节位置和底座位置 + obs = self._get_observation() + joint_pos = obs[self.observation_dim - 3 - self.n_joints: self.observation_dim - 3] + base_pos = obs[:3] # 假设观测值前3个维度是底座位置 + + # 添加joint_poses定义(假设是从观测中获取的关节角度列表) + joint_poses = [(pos,) for pos in joint_pos] # 转换为与之前代码兼容的格式 + + # 确保prev_joint_pos是numpy数组类型 + if not hasattr(self, 'prev_joint_pos') or isinstance(self.prev_joint_pos, tuple): + self.prev_joint_pos = np.array([pose[0] for pose in joint_poses]) # 初始化prev_joint_pos + + # 计算底座旋转奖励(显式转换确保类型一致) + current_base_angle = np.array(joint_poses[0][0]) + base_rotation = abs(current_base_angle - self.prev_joint_pos[0]) + base_rotation_reward = self.base_rotation_weight * base_rotation if base_rotation > self.min_base_rotation_angle else 0 + + # 更新prev_joint_pos为numpy数组 + self.prev_joint_pos = np.array([pose[0] for pose in joint_poses]) + + # 计算到边界的距离 + boundary_distance = self._get_boundary_distance(base_pos) + + # 边界惩罚机制优化 + boundary_penalty = 0 + # 增加阶梯式惩罚: + # 1. 当距离小于threshold时开始渐进惩罚 + # 2. 当距离小于threshold/2时施加硬惩罚 + if boundary_distance < self.boundary_threshold: + boundary_penalty = - (self.boundary_threshold - boundary_distance) * self.boundary_penalty_coeff + if boundary_distance < self.boundary_threshold/2: + boundary_penalty += self.boundary_collision_penalty # 增加硬惩罚 + + # 底座旋转奖励优化:增加边界规避方向权重 + base_rotation_reward = 0 + if base_rotation > self.min_base_rotation_angle: + rotation_dir = np.sign(np.array(joint_pos)[0] - self.prev_joint_pos[0]) + avoid_dir = self._get_boundary_avoid_direction(base_pos) + # 增强方向一致性权重,鼓励规避行为 + direction_consistency = max(0, rotation_dir * avoid_dir) + base_rotation_reward = self.base_rotation_weight * base_rotation * direction_consistency * 1.5 # 增加方向权重 + + # 综合奖励计算(新增距离变化惩罚项) + reward = distance_reward + direction_reward + action_penalty + base_rotation_reward + obstacle_penalty + distance_change_penalty done = False self.step_counter += 1 @@ -247,6 +426,7 @@ class jakaEnv(gym.Env): return obs.copy(), reward, done, info + # 在reset方法中增加障碍物位置随机化 def reset(self): self.step_counter = 0 p.resetSimulation() @@ -262,14 +442,20 @@ class jakaEnv(gym.Env): basePosition=[0.2, 0.5, 0], useFixedBase=True, ) + # 动态障碍物随机初始化(根据环境初始化改进经验) + block_x = random.uniform(0.35, 0.55) + block_y = random.uniform(0.1, 0.3) self.blockId = p.loadURDF(os.path.join(dir_path, "urdf/block4.urdf"), - basePosition=[0.4, 0, 0.47], + basePosition=[block_x, block_y, 0.47], + useFixedBase=True, + ) + + block2_x = random.uniform(0.55, 0.75) + block2_y = random.uniform(0.5, 0.7) + self.blockId2 = p.loadURDF(os.path.join(dir_path, "urdf/block.urdf"), + basePosition=[block2_x, block2_y, 0.43], useFixedBase=True, ) - self.blockId2 = p.loadURDF(os.path.join(dir_path, "urdf/block.urdf"), - basePosition=[0.6, 0.66, 0.43], - useFixedBase=True, - ) state_object = [0.5, 0.2, 0.8] dir_path = os.path.dirname(os.path.realpath(__file__)) self.objectId = p.loadURDF( @@ -404,6 +590,35 @@ class jakaEnv(gym.Env): def close(self): p.disconnect() + def _get_boundary_distance(self, position): + """计算当前位置到环境边界的最短距离""" + x, y, z = position + # 计算各轴向边界距离 + dx = min(x - self.x_low, self.x_high - x) + dy = min(y - self.y_low, self.y_high - y) + dz = min(z - self.z_low, self.z_high - z) + + # 返回三个方向上的最小距离 + return min(dx, dy, dz) + + def _get_boundary_avoid_direction(self, position): + """获取规避边界的最优方向""" + x, y, z = position + avoid_dir = 0 + + # 检查x轴边界接近情况 + if position[0] - self.x_low < self.boundary_threshold: + avoid_dir = 1 # 向x轴正方向移动 + elif self.x_high - position[0] < self.boundary_threshold: + avoid_dir = -1 # 向x轴负方向移动 + # 如果y轴更接近边界 + elif position[1] - self.y_low < self.boundary_threshold: + avoid_dir = 2 # 向y轴正方向移动 + elif self.y_high - position[1] < self.boundary_threshold: + avoid_dir = -2 # 向y轴负方向移动 + + return avoid_dir + if __name__ == "__main__": @@ -468,11 +683,28 @@ if __name__ == "__main__": env = jakaEnv() env = Monitor(env, log_dir) if tempt: - model = SAC('MlpPolicy', env=env, verbose=1, tensorboard_log=log_dir, - device="cuda" - ) + model = SAC( + 'MlpPolicy', + env=env, + verbose=1, + tensorboard_log=log_dir, + device="cuda", + learning_rate=5e-4, # 精细调整学习率 + batch_size=512, # 进一步增大批量大小 + buffer_size=2000000, # 进一步增大经验回放缓冲区 + gamma=0.995, # 进一步提高折扣因子 + tau=0.001, # 进一步减小软更新参数 + ent_coef='auto_0.1', # 调整自动熵系数目标 + target_update_interval=2, # 提高目标网络更新频率 + gradient_steps=2, # 增加每个步骤的梯度更新次数 + use_sde=True, # 启用SDE增强探索能力 + sde_sample_freq=32, # 更频繁地采样SDE噪声 + policy_kwargs=dict(net_arch=dict(pi=[256, 256], qf=[256, 256])) # 增加网络深度 + ) callback = SaveOnBestTrainingRewardCallback(check_freq=1000, log_dir=log_dir) - model.learn(total_timesteps=4000000, callback=callback) + model.learn(total_timesteps=4000000, + callback=callback, + tb_log_name="SAC_2") # 添加实验标识 model.save('model/DOA_SAC_ENV_callback') del model