feat(DOA_SAC_sim2real): 增加周期性模型检查点回调并优化路径配置- 动态路径配置:为硬件模块(如jkrc)实现动态路径配置,确保在不同环境中均可正确加载。

- 观测空间修改:调整观测空间为38维。
- 回调增强:添加 PeriodicModelCheckpointCallback,用于定期保存训练过程中的模型检查点。
- 日志与保存:修改日志目录和模型保存逻辑,使其更加清晰和灵活。
This commit is contained in:
fly6516 2025-05-28 21:42:37 +08:00
parent 3a111b67e2
commit 686164f670

View File

@ -13,13 +13,13 @@ import numpy as np
import random
from scipy import signal
import sys
# sys.path.append('D:\\vs2019ws\PythonCtt\PythonCtt')
import jkrc
import matplotlib as mpl
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
import pandas as pd
# 动态路径配置为硬件模块如jkrc实现动态路径配置确保在不同环境中均可正确加载。
try:
import jkrc
JAKA_AVAILABLE = True
except ImportError:
jkrc = None
JAKA_AVAILABLE = False
os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE"
@ -89,7 +89,11 @@ class jakaEnv(gym.Env):
self.z_high = 1.3
self.speed = [0.3, 0.5, 0.8, 1.0]
self.action_space = spaces.Box(np.array([-1] * 3), np.array([1] * 3))
self.observation_space = spaces.Box(np.array([-1] * 38, np.float32), np.array([1] * 38, np.float32))
# 修改为38维观测空间
self.observation_space = spaces.Box(
np.array([-1] * 38, np.float32),
np.array([1] * 38, np.float32)
)
def compute_reward(self, achieved_goal, goal):
d = goal_distance(achieved_goal, goal)
@ -415,7 +419,7 @@ if __name__ == "__main__":
from stable_baselines3.common.monitor import Monitor
from stable_baselines3.common.results_plotter import load_results, ts2xy, plot_results
from stable_baselines3.common.noise import NormalActionNoise
from stable_baselines3.common.callbacks import BaseCallback
from stable_baselines3.common.callbacks import BaseCallback, EvalCallback
class SaveOnBestTrainingRewardCallback(BaseCallback):
@ -465,7 +469,38 @@ if __name__ == "__main__":
return True
tempt = 0
class PeriodicModelCheckpointCallback(BaseCallback):
"""
Callback for periodically saving the model at specified intervals,
storing each checkpoint in its own subdirectory.
"""
def __init__(self, save_freq: int, log_dir: str, verbose: int = 1):
super(PeriodicModelCheckpointCallback, self).__init__(verbose)
self.save_freq = save_freq
self.log_dir = log_dir
self.checkpoint_count = 0
def _init_callback(self) -> None:
# Create base directory for checkpoints
self.checkpoint_dir = os.path.join(self.log_dir, 'checkpoints')
os.makedirs(self.checkpoint_dir, exist_ok=True)
def _on_step(self) -> bool:
if self.n_calls % self.save_freq == 0:
# Create new checkpoint directory
checkpoint_path = os.path.join(self.checkpoint_dir, f'checkpoint_{self.n_calls}')
os.makedirs(checkpoint_path, exist_ok=True)
# Save model
if self.verbose > 0:
print(f'Saving model checkpoint to {checkpoint_path}')
self.model.save(os.path.join(checkpoint_path, 'model'))
self.checkpoint_count += 1
return True
tempt = 1
log_dir = './tensorboard/DOA_SAC_callback/'
os.makedirs(log_dir, exist_ok=True)
env = jakaEnv()
@ -474,8 +509,17 @@ if __name__ == "__main__":
model = SAC('MlpPolicy', env=env, verbose=1, tensorboard_log=log_dir,
device="cuda"
)
callback = SaveOnBestTrainingRewardCallback(check_freq=1000, log_dir=log_dir)
model.learn(total_timesteps=4000000, callback=callback)
# 创建回调函数列表,包含原有的最佳模型保存回调和新的周期性检查点回调
callback_list = [
SaveOnBestTrainingRewardCallback(check_freq=1000, log_dir=log_dir),
PeriodicModelCheckpointCallback(save_freq=5000, log_dir=log_dir)
]
model.learn(
total_timesteps=4000000,
callback=callback_list,
tb_log_name="SAC_2"
)
model.save('model/DOA_SAC_ENV_callback')
del model