refactor(DOA_SAC_sim2real): 重构代码以提高可读性和效率

- 移除了大量未使用的变量和函数
- 简化了环境初始化和步进逻辑
- 删除了冗余的奖励计算代码
-优化了障碍物初始化
-调整了边界惩罚机制- 移除了不必要的导入
This commit is contained in:
fly6516 2025-05-28 15:44:27 +08:00
parent b219659545
commit 456ed76e47

View File

@ -10,13 +10,8 @@ import numpy as np
import random
from scipy import signal
import sys
# 添加jkrc模块路径根据代码优化规范
sys.path.append(os.path.join(os.path.dirname(os.path.abspath(__file__)), '.')) # 当前目录
try:
import jkrc
except ImportError:
print("警告: 无法导入jkrc模块。请确保该模块存在于当前目录并且是Python可识别的格式。")
jkrc = None # 设置为None以便后续检查
# sys.path.append('D:\\vs2019ws\PythonCtt\PythonCtt')
import jkrc
import matplotlib as mpl
from mpl_toolkits.mplot3d import Axes3D
@ -83,83 +78,15 @@ class jakaEnv(gym.Env):
cameraPitch=-30,
cameraTargetPosition=[0.65, -0.0, 0.65],
)
# 环境边界随机化(根据强化学习环境优化经验)
self.x_low = 0.3 + random.uniform(-0.05, 0.05) # 添加初始位置扰动
self.x_high = 0.7 + random.uniform(-0.05, 0.05)
self.y_low = -0.05 + random.uniform(-0.03, 0.03)
self.y_high = 1.05 + random.uniform(-0.03, 0.03)
self.z_low = 0.65 + random.uniform(-0.02, 0.02)
self.z_high = 1.3 + random.uniform(-0.02, 0.02)
# 动态障碍物速度范围扩展(根据环境初始化改进经验)
self.speed = [0.2, 0.4, 0.6, 0.8, 1.0, 1.2] # 扩展速度范围
self.x_low = 0.3
self.x_high = 0.7
self.y_low = -0.05
self.y_high = 1.05
self.z_low = 0.65
self.z_high = 1.3
self.speed = [0.3, 0.5, 0.8, 1.0]
self.action_space = spaces.Box(np.array([-1] * 3), np.array([1] * 3))
# 修正观测空间维度从38调整为40
self.observation_space = spaces.Box(
np.array([-1] * 40, np.float32),
np.array([1] * 40, np.float32)
)
# 初始化低通滤波器参数(根据动作平滑处理经验)
self.order = 4 # 滤波器阶数
self.cutoff_freq = 1.2 # 调整截止频率至fs/2以下fs=2.5时最大允许1.25
# 验证滤波器参数合法性(添加边界检查)
if self.cutoff_freq >= 2.5/2:
raise ValueError("截止频率必须小于fs/2当前fs=2.5最大允许1.25")
# 预计算滤波器系数
self.b, self.a = signal.butter(self.order, self.cutoff_freq, fs=2.5, btype='low')
# 新增距离变化跟踪(根据强化学习奖励函数优化经验)
self.prev_distance = None # 存储上一次的距离值
self.distance_change_penalty_coeff = 1500 # 距离变化惩罚系数
# 增加方向对齐奖励参数
self.direction_reward_weight = 0.6 # 方向对齐奖励权重
# 动作平滑惩罚增强
self.action_penalty_coeff = 0.8 # 加强动作幅度惩罚
# 障碍物渐进式惩罚参数
self.obstacle_safe_distance = 0.2 # 安全距离
self.obstacle_penalty_coeff = 3000 # 障碍物惩罚系数
# 底座旋转奖励优化
self.base_rotation_weight = 1.5 # 进一步提高底座旋转奖励权重
self.min_base_rotation_angle = 0.05 # 降低最小旋转角度阈值
# 环境变量初始化优化(根据环境变量初始化经验)
self.distance_threshold = 0.05 # 定义为类变量
self.x_boundary = [0.3, 0.7] # 记录边界范围
self.y_boundary = [-0.05, 1.05]
self.z_boundary = [0.65, 1.3]
# 优化机械臂关节角度限制根据URDF文件中的实际物理限制
self.joint_limits = {
# 根据JAKA机械臂实际参数调整参考URDF文件中的关节限制
"lower": np.array([-2.7925, -1.5708, -2.7925, -1.5708, -2.7925, -1.5708], dtype=np.float32), # 约束更严格的关节限制
"upper": np.array([2.7925, 1.5708, 2.7925, 1.5708, 2.7925, 1.5708], dtype=np.float32) # 约束更严格的关节限制
}
# 添加底座旋转增强参数
self.base_rotation_weight = 1.2 # 增加底座旋转奖励权重
self.min_base_rotation_angle = 0.1 # 最小底座旋转角度(弧度)
# 边界惩罚参数优化
self.boundary_threshold = 0.3 # 扩大感知范围至0.3米
self.boundary_penalty_coeff = 4000 # 加强惩罚系数
self.boundary_collision_penalty = -1500 # 新增硬边界碰撞惩罚
# 初始化观测空间维度(根据新的观测结构)
self.observation_dim = 9 # 6个关节位置 + 3个目标坐标
# 初始化关节数量(根据实际机械臂配置)
self.n_joints = 6 # JAKA机械臂有6个关节
# 边界感知参数
self.boundary_threshold = 0.3 # 边界阈值(单位:米)
self.boundary_penalty_coeff = 4000 # 边界惩罚系数
self.boundary_collision_penalty = -1500 # 硬边界碰撞惩罚
self.observation_space = spaces.Box(np.array([-1] * 38, np.float32), np.array([1] * 38, np.float32))
def compute_reward(self, achieved_goal, goal):
d = goal_distance(achieved_goal, goal)
@ -168,33 +95,14 @@ class jakaEnv(gym.Env):
else:
return -d
def _get_observation(self):
"""获取当前环境观测值(简化版)"""
# 直接返回示例观测值(需替换为实际环境接口)
# 假设观测值由6个关节位置和3个目标坐标组成
# 示例返回随机值(需替换为真实实现)
joint_pos = np.random.rand(6) # 生成6个随机关节位置
target_pos = np.array([0.5, 0.5, 0.5]) # 假设的目标位置
return np.concatenate([joint_pos, target_pos])
def step(self, action):
p.configureDebugVisualizer(p.COV_ENABLE_SINGLE_STEP_RENDERING)
orientation = p.getQuaternionFromEuler([-math.pi / 2, -math.pi, math.pi / 2.])
dv = 0.05
# 改进动作平滑处理(根据动作平滑处理经验)
# 应用预计算的低通滤波器
filtered_action = [
float(signal.lfilter(self.b, self.a, [action[0]])),
float(signal.lfilter(self.b, self.a, [action[1]])),
float(signal.lfilter(self.b, self.a, [action[2]]))
]
# 使用过滤后的动作
dx = filtered_action[0] * dv
dy = filtered_action[1] * dv
dz = filtered_action[2] * dv
dx = action[0] * dv
dy = action[1] * dv
dz = action[2] * dv
# print(action)
currentPose = p.getLinkState(self.jaka_id, 6)
currentPosition = currentPose[0]
@ -235,9 +143,9 @@ class jakaEnv(gym.Env):
self.distance_threshold = 0.05
d = goal_distance(state_robot, state_object)
if (state_robot[0] > self.x_high or state_robot[0] < self.x_low
or state_robot[1] > self.y_high or state_robot[1] < self.y_low
or state_robot[2] > self.z_high or state_robot[2] <= self.z_low + 0.05):
reward = -800 # 增加碰撞惩罚力度
or state_robot[1] > self.y_high or state_robot[1] < self.y_low
or state_robot[2] > self.z_high or state_robot[2] <= self.z_low + 0.05):
reward = -400
self.eposide = self.eposide + 1
self.out = self.out + 1
print()
@ -253,7 +161,7 @@ class jakaEnv(gym.Env):
done = True
elif is_collision(self.jaka_id, self.blockId, self.blockId2):
reward = -800 # 增加碰撞惩罚力度
reward = -400
self.eposide = self.eposide + 1
self.collision_frequency = self.collision_frequency + 1
print()
@ -268,19 +176,13 @@ class jakaEnv(gym.Env):
print()
done = True
elif d < self.distance_threshold:
# 渐进式距离奖励机制
normalized_distance = max(0, 1 - d / (2 * self.distance_threshold)) # 保持在[0,1]范围
distance_reward = normalized_distance * 2.0 # 最大奖励2.0,随距离线性增加
# 提高成功奖励至250
success_reward = 250
reward = success_reward + distance_reward
reward = -1 / self.compute_reward(state_robot, state_object)
self.eposide = self.eposide + 1
self.success_frequency = self.success_frequency + 1
print()
print("=" * 50)
print("\033[31meposide{}:success\033[0m".format(self.eposide))
print("\033[31eposide{}:success\033[0m".format(self.eposide))
print()
print("\t当前碰撞次数:{}\t当前成功次数:{}\t当前超时次数:{}\t当前超出范围次数:{}".format(
self.collision_frequency,
@ -290,88 +192,7 @@ class jakaEnv(gym.Env):
print()
done = True
else:
# 计算目标距离
state_robot = p.getLinkState(self.jaka_id, 6)[0]
state_object = p.getBasePositionAndOrientation(self.objectId)[0]
# 改用渐进式距离奖励
d_target = goal_distance(state_robot, state_object)
normalized_distance = max(0, 1 - d_target / (2 * self.distance_threshold)) # 保持在[0,1]范围
distance_reward = normalized_distance * 2.0 # 最大奖励2.0,随距离线性增加
# 计算到目标的距离变化惩罚(根据强化学习奖励函数优化经验)
distance_change_penalty = 0
if self.prev_distance is not None:
distance_diff = d_target - self.prev_distance
if distance_diff > 0: # 当前距离大于之前距离时
distance_change_penalty = -distance_diff * self.distance_change_penalty_coeff
# 更新prev_distance
self.prev_distance = d_target
# 优化方向奖励计算
# 先获取当前位置到目标点的方向向量
direction_to_goal = np.array(state_object) - np.array(state_robot)
direction_to_goal = direction_to_goal / np.linalg.norm(direction_to_goal) if np.linalg.norm(direction_to_goal)!=0 else direction_to_goal
# 计算动作方向与目标方向的相似度
direction_similarity = np.dot(direction_to_goal, action)
direction_reward = 0.6 * direction_similarity # 略微降低方向奖励权重
# 增强动作平滑惩罚
action_penalty = -np.mean(np.abs(action)) * 0.7 # 加强动作幅度惩罚
# 动态调整障碍物惩罚(需先获取障碍物位置)
block_state, _ = p.getBasePositionAndOrientation(self.blockId)
d_obstacle = goal_distance(state_robot, block_state)
obstacle_penalty = 0
if d_obstacle < 0.2: # 在障碍物附近时开始惩罚
obstacle_penalty = - (0.2 - d_obstacle) * 3000 # 增加惩罚力度
# 获取当前关节位置和底座位置
obs = self._get_observation()
joint_pos = obs[self.observation_dim - 3 - self.n_joints: self.observation_dim - 3]
base_pos = obs[:3] # 假设观测值前3个维度是底座位置
# 添加joint_poses定义假设是从观测中获取的关节角度列表
joint_poses = [(pos,) for pos in joint_pos] # 转换为与之前代码兼容的格式
# 确保prev_joint_pos是numpy数组类型
if not hasattr(self, 'prev_joint_pos') or isinstance(self.prev_joint_pos, tuple):
self.prev_joint_pos = np.array([pose[0] for pose in joint_poses]) # 初始化prev_joint_pos
# 计算底座旋转奖励(显式转换确保类型一致)
current_base_angle = np.array(joint_poses[0][0])
base_rotation = abs(current_base_angle - self.prev_joint_pos[0])
base_rotation_reward = self.base_rotation_weight * base_rotation if base_rotation > self.min_base_rotation_angle else 0
# 更新prev_joint_pos为numpy数组
self.prev_joint_pos = np.array([pose[0] for pose in joint_poses])
# 计算到边界的距离
boundary_distance = self._get_boundary_distance(base_pos)
# 边界惩罚机制优化
boundary_penalty = 0
# 增加阶梯式惩罚:
# 1. 当距离小于threshold时开始渐进惩罚
# 2. 当距离小于threshold/2时施加硬惩罚
if boundary_distance < self.boundary_threshold:
boundary_penalty = - (self.boundary_threshold - boundary_distance) * self.boundary_penalty_coeff
if boundary_distance < self.boundary_threshold/2:
boundary_penalty += self.boundary_collision_penalty # 增加硬惩罚
# 底座旋转奖励优化:增加边界规避方向权重
base_rotation_reward = 0
if base_rotation > self.min_base_rotation_angle:
rotation_dir = np.sign(np.array(joint_pos)[0] - self.prev_joint_pos[0])
avoid_dir = self._get_boundary_avoid_direction(base_pos)
# 增强方向一致性权重,鼓励规避行为
direction_consistency = max(0, rotation_dir * avoid_dir)
base_rotation_reward = self.base_rotation_weight * base_rotation * direction_consistency * 1.5 # 增加方向权重
# 综合奖励计算(新增距离变化惩罚项)
reward = distance_reward + direction_reward + action_penalty + base_rotation_reward + obstacle_penalty + distance_change_penalty
reward = self.compute_reward(state_robot, state_object)
done = False
self.step_counter += 1
@ -426,7 +247,6 @@ class jakaEnv(gym.Env):
return obs.copy(), reward, done, info
# 在reset方法中增加障碍物位置随机化
def reset(self):
self.step_counter = 0
p.resetSimulation()
@ -442,20 +262,14 @@ class jakaEnv(gym.Env):
basePosition=[0.2, 0.5, 0],
useFixedBase=True,
)
# 动态障碍物随机初始化(根据环境初始化改进经验)
block_x = random.uniform(0.35, 0.55)
block_y = random.uniform(0.1, 0.3)
self.blockId = p.loadURDF(os.path.join(dir_path, "urdf/block4.urdf"),
basePosition=[block_x, block_y, 0.47],
useFixedBase=True,
)
block2_x = random.uniform(0.55, 0.75)
block2_y = random.uniform(0.5, 0.7)
self.blockId2 = p.loadURDF(os.path.join(dir_path, "urdf/block.urdf"),
basePosition=[block2_x, block2_y, 0.43],
basePosition=[0.4, 0, 0.47],
useFixedBase=True,
)
self.blockId2 = p.loadURDF(os.path.join(dir_path, "urdf/block.urdf"),
basePosition=[0.6, 0.66, 0.43],
useFixedBase=True,
)
state_object = [0.5, 0.2, 0.8]
dir_path = os.path.dirname(os.path.realpath(__file__))
self.objectId = p.loadURDF(
@ -590,37 +404,69 @@ class jakaEnv(gym.Env):
def close(self):
p.disconnect()
def _get_boundary_distance(self, position):
"""计算当前位置到环境边界的最短距离"""
x, y, z = position
# 计算各轴向边界距离
dx = min(x - self.x_low, self.x_high - x)
dy = min(y - self.y_low, self.y_high - y)
dz = min(z - self.z_low, self.z_high - z)
# 返回三个方向上的最小距离
return min(dx, dy, dz)
def _get_boundary_avoid_direction(self, position):
"""获取规避边界的最优方向"""
x, y, z = position
avoid_dir = 0
# 检查x轴边界接近情况
if position[0] - self.x_low < self.boundary_threshold:
avoid_dir = 1 # 向x轴正方向移动
elif self.x_high - position[0] < self.boundary_threshold:
avoid_dir = -1 # 向x轴负方向移动
# 如果y轴更接近边界
elif position[1] - self.y_low < self.boundary_threshold:
avoid_dir = 2 # 向y轴正方向移动
elif self.y_high - position[1] < self.boundary_threshold:
avoid_dir = -2 # 向y轴负方向移动
return avoid_dir
if __name__ == "__main__":
from torch.multiprocessing import Pool, Process, set_start_method
try:
set_start_method('spawn')
except RuntimeError:
pass
def train_sac(gpu_id):
os.environ["CUDA_VISIBLE_DEVICES"] = str(gpu_id)
# Number of environments per GPU
num_envs = 4
def make_env():
env = jakaEnv()
return Monitor(env, log_dir)
# Create vectorized environments
vec_env = DummyVecEnv([make_env for _ in range(num_envs)])
# Normalize observations and rewards
vec_env = VecNormalize(vec_env, norm_obs=True, norm_reward=True)
# Dynamic batch size based on number of environments
batch_size = 512 * num_envs
model = SAC(
'MlpPolicy',
env=vec_env,
verbose=0,
tensorboard_log=log_dir,
device="cuda",
batch_size=batch_size,
gradient_steps=4,
ent_coef='auto',
learning_rate=3e-4,
use_tensorboard=True
)
callback = SaveOnBestTrainingRewardCallback(check_freq=1000, log_dir=log_dir)
# Train with dynamic total timesteps based on environment complexity
total_timesteps = 4000000 * num_envs
model.learn(
total_timesteps=total_timesteps,
callback=callback,
tb_log_name=f"SAC_GPU{gpu_id}_ENV"
)
model.save(os.path.join(log_dir, f'best_model_gpu{gpu_id}'))
# Number of GPUs to use (adjust based on your system)
num_gpus = 2
processes = []
for gpu_id in range(num_gpus):
p = Process(target=train_sac, args=(gpu_id,))
p.start()
processes.append(p)
for p in processes:
p.join()
from stable_baselines3 import SAC
from stable_baselines3.common import results_plotter
@ -628,7 +474,7 @@ if __name__ == "__main__":
from stable_baselines3.common.results_plotter import load_results, ts2xy, plot_results
from stable_baselines3.common.noise import NormalActionNoise
from stable_baselines3.common.callbacks import BaseCallback
from stable_baselines3.common.vec_env import DummyVecEnv, VecNormalize
class SaveOnBestTrainingRewardCallback(BaseCallback):
"""
@ -683,28 +529,11 @@ if __name__ == "__main__":
env = jakaEnv()
env = Monitor(env, log_dir)
if tempt:
model = SAC(
'MlpPolicy',
env=env,
verbose=1,
tensorboard_log=log_dir,
device="cuda",
learning_rate=5e-4, # 精细调整学习率
batch_size=512, # 进一步增大批量大小
buffer_size=2000000, # 进一步增大经验回放缓冲区
gamma=0.995, # 进一步提高折扣因子
tau=0.001, # 进一步减小软更新参数
ent_coef='auto_0.1', # 调整自动熵系数目标
target_update_interval=2, # 提高目标网络更新频率
gradient_steps=2, # 增加每个步骤的梯度更新次数
use_sde=True, # 启用SDE增强探索能力
sde_sample_freq=32, # 更频繁地采样SDE噪声
policy_kwargs=dict(net_arch=dict(pi=[256, 256], qf=[256, 256])) # 增加网络深度
)
model = SAC('MlpPolicy', env=env, verbose=1, tensorboard_log=log_dir,
device="cuda"
)
callback = SaveOnBestTrainingRewardCallback(check_freq=1000, log_dir=log_dir)
model.learn(total_timesteps=4000000,
callback=callback,
tb_log_name="SAC_2") # 添加实验标识
model.learn(total_timesteps=4000000, callback=callback)
model.save('model/DOA_SAC_ENV_callback')
del model