feat(DOA_SAC_sim2real): 实现高级奖励机制并优化模型训练

- 新增奖励函数权重参数,可调节距离、动作、碰撞和边界惩罚
- 实现归一化距离奖励、动作幅度惩罚、碰撞惩罚和边界惩罚
- 更新模型训练配置,增加经验回放缓冲区大小、调整学习率等
- 添加多GPU支持和数据并行训练
- 优化日志记录和模型保存策略
This commit is contained in:
fly6516 2025-05-29 15:41:42 +08:00
parent 686164f670
commit 1fc489e188

View File

@ -71,6 +71,11 @@ class jakaEnv(gym.Env):
self.overstep_frequency = 0
self.out = 0
self.reward_type = "dense"
# 奖励函数权重参数(可调节)
self.alpha = 1.0 # 距离奖励权重
self.beta = 0.1 # 动作惩罚权重
self.gamma = 200 # 碰撞惩罚权重
self.delta = 100 # 边界惩罚权重
p.connect(
p.GUI,
# options="--background_color_red=0.0 --background_color_green=0.93--background_color_blue=0.54",
@ -95,12 +100,36 @@ class jakaEnv(gym.Env):
np.array([1] * 38, np.float32)
)
def compute_reward(self, achieved_goal, goal):
def compute_reward(self, achieved_goal, goal, action=None):
d = goal_distance(achieved_goal, goal)
if self.reward_type == "sparse":
return -(d > self.distance_threshold).astyp(np.float32)
else:
return -d
# 归一化距离奖励使用tanh函数
distance_reward = -np.tanh(d)
# 动作幅度惩罚L2正则化
action_penalty = 0
if action is not None:
action_penalty = np.linalg.norm(action)
# 碰撞惩罚(硬边界)
collision_penalty = self.gamma if is_collision(self.jaka_id, self.blockId, self.blockId2) else 0
# 边界惩罚(指数级增长)
boundary_penalty = 0
if achieved_goal[0] > self.x_high or achieved_goal[0] < self.x_low:
boundary_penalty += self.delta * np.exp(abs(achieved_goal[0] - self.x_high) + abs(achieved_goal[0] - self.x_low))
if achieved_goal[1] > self.y_high or achieved_goal[1] < self.y_low:
boundary_penalty += self.delta * np.exp(abs(achieved_goal[1] - self.y_high) + abs(achieved_goal[1] - self.y_low))
if achieved_goal[2] > self.z_high or achieved_goal[2] <= self.z_low + 0.05:
boundary_penalty += self.delta * np.exp(abs(achieved_goal[2] - self.z_high) + abs(achieved_goal[2] - self.z_low))
# 组合奖励项
reward = self.alpha * distance_reward \
- self.beta * action_penalty \
- collision_penalty \
- boundary_penalty
return reward
def step(self, action):
p.configureDebugVisualizer(p.COV_ENABLE_SINGLE_STEP_RENDERING)
@ -149,6 +178,9 @@ class jakaEnv(gym.Env):
self.distance_threshold = 0.05
d = goal_distance(state_robot, state_object)
# 使用新的奖励函数
reward = self.compute_reward(state_robot, state_object, action)
if (state_robot[0] > self.x_high or state_robot[0] < self.x_low
or state_robot[1] > self.y_high or state_robot[1] < self.y_low
or state_robot[2] > self.z_high or state_robot[2] <= self.z_low + 0.05):
@ -183,13 +215,12 @@ class jakaEnv(gym.Env):
print()
done = True
elif d < self.distance_threshold:
reward = -1 / self.compute_reward(state_robot, state_object)
reward = -1 / self.compute_reward(state_robot, state_object, action)
self.eposide = self.eposide + 1
self.success_frequency = self.success_frequency + 1
print()
print("=" * 50)
print("\033[31eposide{}:success\033[0m".format(self.eposide))
print("\033[31meposide{}:success\033[0m".format(self.eposide))
print()
print("\t当前碰撞次数:{}\t当前成功次数:{}\t当前超时次数:{}\t当前超出范围次数:{}".format(
self.collision_frequency,
@ -199,7 +230,7 @@ class jakaEnv(gym.Env):
print()
done = True
else:
reward = self.compute_reward(state_robot, state_object)
reward = self.compute_reward(state_robot, state_object, action)
done = False
self.step_counter += 1
@ -506,9 +537,31 @@ if __name__ == "__main__":
env = jakaEnv()
env = Monitor(env, log_dir)
if tempt:
# 检查CUDA可用性并自动选择设备
device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"Using device: {device}")
# 自动检测可用GPU数量
num_gpus = torch.cuda.device_count()
print(f"Number of available GPUs: {num_gpus}")
model = SAC('MlpPolicy', env=env, verbose=1, tensorboard_log=log_dir,
device="cuda"
device=device, # 自动选择设备
buffer_size=200000, # 增大经验回放缓冲区至200万
batch_size=512 * max(1, num_gpus), # 根据GPU数量动态调整批量大小
gamma=0.995, # 提高折扣因子至0.995
tau=0.001, # 减小软更新参数至0.001
ent_coef='auto_0.1', # 自动调节熵系数目标至0.1
learning_rate=5e-4, # 提高学习率至5e-4
target_update_interval=1, # 提高目标网络更新频率
gradient_steps=4 # 增加梯度更新频率至4次/step
)
# 如果有多个GPU启用数据并行
if num_gpus > 1:
print("Using DataParallel for multi-GPU training")
model.policy = nn.DataParallel(model.policy)
# 创建回调函数列表,包含原有的最佳模型保存回调和新的周期性检查点回调
callback_list = [
SaveOnBestTrainingRewardCallback(check_freq=1000, log_dir=log_dir),
@ -518,7 +571,8 @@ if __name__ == "__main__":
model.learn(
total_timesteps=4000000,
callback=callback_list,
tb_log_name="SAC_2"
tb_log_name="SAC_2",
log_interval=50 # 添加日志间隔以监控训练进度
)
model.save('model/DOA_SAC_ENV_callback')
del model