RL-PowerTracking-new/DOA_SAC_sim2real.py

766 lines
31 KiB
Python
Raw Permalink Normal View History

import time
import gym
from gym import error, spaces, utils
from gym.utils import seeding
import os
import pybullet as p
import pybullet_data
import math
import numpy as np
import random
from scipy import signal
import sys
# 添加jkrc模块路径根据代码优化规范
sys.path.append(os.path.join(os.path.dirname(os.path.abspath(__file__)), '.')) # 当前目录
try:
import jkrc
except ImportError:
print("警告: 无法导入jkrc模块。请确保该模块存在于当前目录并且是Python可识别的格式。")
jkrc = None # 设置为None以便后续检查
import matplotlib as mpl
from mpl_toolkits.mplot3d import Axes3D
import matplotlib.pyplot as plt
import pandas as pd
os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE"
MAX_EPISODE_LEN = 20 * 100
x = []
y = []
z = []
# 运动模式
# PI=3.1415926
# ABS = 0 # 绝对运动
# INCR = 1 # 增量运动
# Enable = True
# Disable = False
# robot = jkrc.RC("192.168.31.5")#返回一个机器人对象
# robot.login()#登录
# # robot.servo_move_use_none_filter()
# robot.power_on() #上电
# robot.enable_robot()
# # joint_pos=[0, 1.57, 1.57, 1.57, -1.57, 0]
# # robot.joint_move(joint_pos,ABS,True,1)
# robot.servo_move_enable(Enable) #进入位置控制模式
def goal_distance(goal_a, goal_b):
return np.linalg.norm(np.array(goal_a) - np.array(goal_b), axis=-1)
def is_collision(robotId, bodyA, bodyB):
is_bool1 = p.getContactPoints(robotId, bodyA)
is_bool2 = p.getContactPoints(robotId, bodyB)
if is_bool1:
return True
elif is_bool2:
return True
else:
return False
class jakaEnv(gym.Env):
metadata = {"render.modes": ["human"]}
def __init__(self):
self.step_counter = 0
self.eposide = 0
self.collision_frequency = 0
self.success_frequency = 0
self.overstep_frequency = 0
self.out = 0
self.reward_type = "dense"
p.connect(
p.GUI,
# options="--background_color_red=0.0 --background_color_green=0.93--background_color_blue=0.54",
)
p.resetDebugVisualizerCamera(
cameraDistance=1.25,
cameraYaw=45,
cameraPitch=-30,
cameraTargetPosition=[0.65, -0.0, 0.65],
)
# 环境边界随机化(根据强化学习环境优化经验)
self.x_low = 0.3 + random.uniform(-0.05, 0.05) # 添加初始位置扰动
self.x_high = 0.7 + random.uniform(-0.05, 0.05)
self.y_low = -0.05 + random.uniform(-0.03, 0.03)
self.y_high = 1.05 + random.uniform(-0.03, 0.03)
self.z_low = 0.65 + random.uniform(-0.02, 0.02)
self.z_high = 1.3 + random.uniform(-0.02, 0.02)
# 动态障碍物速度范围扩展(根据环境初始化改进经验)
self.speed = [0.2, 0.4, 0.6, 0.8, 1.0, 1.2] # 扩展速度范围
self.action_space = spaces.Box(np.array([-1] * 3), np.array([1] * 3))
# 修正观测空间维度从38调整为40
self.observation_space = spaces.Box(
np.array([-1] * 40, np.float32),
np.array([1] * 40, np.float32)
)
# 初始化低通滤波器参数(根据动作平滑处理经验)
self.order = 4 # 滤波器阶数
self.cutoff_freq = 1.2 # 调整截止频率至fs/2以下fs=2.5时最大允许1.25
# 验证滤波器参数合法性(添加边界检查)
if self.cutoff_freq >= 2.5/2:
raise ValueError("截止频率必须小于fs/2当前fs=2.5最大允许1.25")
# 预计算滤波器系数
self.b, self.a = signal.butter(self.order, self.cutoff_freq, fs=2.5, btype='low')
# 新增距离变化跟踪(根据强化学习奖励函数优化经验)
self.prev_distance = None # 存储上一次的距离值
self.distance_change_penalty_coeff = 1500 # 距离变化惩罚系数
# 增加方向对齐奖励参数
self.direction_reward_weight = 0.6 # 方向对齐奖励权重
# 动作平滑惩罚增强
self.action_penalty_coeff = 0.8 # 加强动作幅度惩罚
# 障碍物渐进式惩罚参数
self.obstacle_safe_distance = 0.2 # 安全距离
self.obstacle_penalty_coeff = 3000 # 障碍物惩罚系数
# 底座旋转奖励优化
self.base_rotation_weight = 1.5 # 进一步提高底座旋转奖励权重
self.min_base_rotation_angle = 0.05 # 降低最小旋转角度阈值
# 环境变量初始化优化(根据环境变量初始化经验)
self.distance_threshold = 0.05 # 定义为类变量
self.x_boundary = [0.3, 0.7] # 记录边界范围
self.y_boundary = [-0.05, 1.05]
self.z_boundary = [0.65, 1.3]
# 优化机械臂关节角度限制根据URDF文件中的实际物理限制
self.joint_limits = {
# 根据JAKA机械臂实际参数调整参考URDF文件中的关节限制
"lower": np.array([-2.7925, -1.5708, -2.7925, -1.5708, -2.7925, -1.5708], dtype=np.float32), # 约束更严格的关节限制
"upper": np.array([2.7925, 1.5708, 2.7925, 1.5708, 2.7925, 1.5708], dtype=np.float32) # 约束更严格的关节限制
}
# 添加底座旋转增强参数
self.base_rotation_weight = 1.2 # 增加底座旋转奖励权重
self.min_base_rotation_angle = 0.1 # 最小底座旋转角度(弧度)
# 边界惩罚参数优化
self.boundary_threshold = 0.3 # 扩大感知范围至0.3米
self.boundary_penalty_coeff = 4000 # 加强惩罚系数
self.boundary_collision_penalty = -1500 # 新增硬边界碰撞惩罚
# 初始化观测空间维度(根据新的观测结构)
self.observation_dim = 9 # 6个关节位置 + 3个目标坐标
# 初始化关节数量(根据实际机械臂配置)
self.n_joints = 6 # JAKA机械臂有6个关节
# 边界感知参数
self.boundary_threshold = 0.3 # 边界阈值(单位:米)
self.boundary_penalty_coeff = 4000 # 边界惩罚系数
self.boundary_collision_penalty = -1500 # 硬边界碰撞惩罚
def compute_reward(self, achieved_goal, goal):
d = goal_distance(achieved_goal, goal)
if self.reward_type == "sparse":
return -(d > self.distance_threshold).astyp(np.float32)
else:
return -d
def _get_observation(self):
"""获取当前环境观测值(简化版)"""
# 直接返回示例观测值(需替换为实际环境接口)
# 假设观测值由6个关节位置和3个目标坐标组成
# 示例返回随机值(需替换为真实实现)
joint_pos = np.random.rand(6) # 生成6个随机关节位置
target_pos = np.array([0.5, 0.5, 0.5]) # 假设的目标位置
return np.concatenate([joint_pos, target_pos])
def step(self, action):
p.configureDebugVisualizer(p.COV_ENABLE_SINGLE_STEP_RENDERING)
orientation = p.getQuaternionFromEuler([-math.pi / 2, -math.pi, math.pi / 2.])
dv = 0.05
# 改进动作平滑处理(根据动作平滑处理经验)
# 应用预计算的低通滤波器
filtered_action = [
float(signal.lfilter(self.b, self.a, [action[0]])),
float(signal.lfilter(self.b, self.a, [action[1]])),
float(signal.lfilter(self.b, self.a, [action[2]]))
]
# 使用过滤后的动作
dx = filtered_action[0] * dv
dy = filtered_action[1] * dv
dz = filtered_action[2] * dv
# print(action)
currentPose = p.getLinkState(self.jaka_id, 6)
currentPosition = currentPose[0]
newPosition = [
currentPosition[0] + dx,
currentPosition[1] + dy,
currentPosition[2] + dz,
]
jointPoses = p.calculateInverseKinematics(
self.jaka_id, 6, newPosition, orientation
)[0:6]
p.setJointMotorControlArray(
self.jaka_id,
list(range(1, 7)),
p.POSITION_CONTROL,
list(jointPoses),
)
print(jointPoses)
p.resetBaseVelocity(self.blockId, linearVelocity=[0, random.choice(self.speed), 0])
p.stepSimulation()
# robot.servo_move_enable(True)
# robot.servo_p(cartesian_pose=[dx*100, dy*100, dz*50, 0, 0, 0], move_mode=1)
# time.sleep(0.008)
state_object, state_object_orienation = p.getBasePositionAndOrientation(self.objectId)
twist_object, twist_object_orienation = p.getBaseVelocity(self.objectId)
state_robot = p.getLinkState(self.jaka_id, 6)[0]
block_speed, block_speed_orienation = p.getBaseVelocity(self.blockId)
block_state, block_state_orienation = p.getBasePositionAndOrientation(self.blockId)
block2_state, block2state_orienation = p.getBasePositionAndOrientation(self.blockId2)
p.addUserDebugLine(lineFromXYZ=currentPosition, lineToXYZ=state_robot, lineColorRGB=[0, 1, 0], lineWidth=2)
x.append(state_robot[0])
y.append(state_robot[1])
z.append(state_robot[2])
self.distance_threshold = 0.05
d = goal_distance(state_robot, state_object)
if (state_robot[0] > self.x_high or state_robot[0] < self.x_low
or state_robot[1] > self.y_high or state_robot[1] < self.y_low
or state_robot[2] > self.z_high or state_robot[2] <= self.z_low + 0.05):
reward = -800 # 增加碰撞惩罚力度
self.eposide = self.eposide + 1
self.out = self.out + 1
print()
print("=" * 50)
print("\033[36meposide{}:out of range\033[0m".format(self.eposide))
print()
print("\t当前碰撞次数:{}\t当前成功次数:{}\t当前超时次数:{}\t当前超出范围次数:{}".format(
self.collision_frequency,
self.success_frequency,
self.overstep_frequency, self.out))
print("=" * 50)
print()
done = True
elif is_collision(self.jaka_id, self.blockId, self.blockId2):
reward = -800 # 增加碰撞惩罚力度
self.eposide = self.eposide + 1
self.collision_frequency = self.collision_frequency + 1
print()
print("=" * 50)
print("\033[33meposide{}:collision\033[0m".format(self.eposide))
print()
print("\t当前碰撞次数:{}\t当前成功次数:{}\t当前超时次数:{}\t当前超出范围次数:{}".format(
self.collision_frequency,
self.success_frequency,
self.overstep_frequency, self.out))
print("=" * 50)
print()
done = True
elif d < self.distance_threshold:
# 渐进式距离奖励机制
normalized_distance = max(0, 1 - d / (2 * self.distance_threshold)) # 保持在[0,1]范围
distance_reward = normalized_distance * 2.0 # 最大奖励2.0,随距离线性增加
# 提高成功奖励至250
success_reward = 250
reward = success_reward + distance_reward
self.eposide = self.eposide + 1
self.success_frequency = self.success_frequency + 1
print()
print("=" * 50)
print("\033[31meposide{}:success\033[0m".format(self.eposide))
print()
print("\t当前碰撞次数:{}\t当前成功次数:{}\t当前超时次数:{}\t当前超出范围次数:{}".format(
self.collision_frequency,
self.success_frequency,
self.overstep_frequency, self.out))
print("=" * 50)
print()
done = True
else:
# 计算目标距离
state_robot = p.getLinkState(self.jaka_id, 6)[0]
state_object = p.getBasePositionAndOrientation(self.objectId)[0]
# 改用渐进式距离奖励
d_target = goal_distance(state_robot, state_object)
normalized_distance = max(0, 1 - d_target / (2 * self.distance_threshold)) # 保持在[0,1]范围
distance_reward = normalized_distance * 2.0 # 最大奖励2.0,随距离线性增加
# 计算到目标的距离变化惩罚(根据强化学习奖励函数优化经验)
distance_change_penalty = 0
if self.prev_distance is not None:
distance_diff = d_target - self.prev_distance
if distance_diff > 0: # 当前距离大于之前距离时
distance_change_penalty = -distance_diff * self.distance_change_penalty_coeff
# 更新prev_distance
self.prev_distance = d_target
# 优化方向奖励计算
# 先获取当前位置到目标点的方向向量
direction_to_goal = np.array(state_object) - np.array(state_robot)
direction_to_goal = direction_to_goal / np.linalg.norm(direction_to_goal) if np.linalg.norm(direction_to_goal)!=0 else direction_to_goal
# 计算动作方向与目标方向的相似度
direction_similarity = np.dot(direction_to_goal, action)
direction_reward = 0.6 * direction_similarity # 略微降低方向奖励权重
# 增强动作平滑惩罚
action_penalty = -np.mean(np.abs(action)) * 0.7 # 加强动作幅度惩罚
# 动态调整障碍物惩罚(需先获取障碍物位置)
block_state, _ = p.getBasePositionAndOrientation(self.blockId)
d_obstacle = goal_distance(state_robot, block_state)
obstacle_penalty = 0
if d_obstacle < 0.2: # 在障碍物附近时开始惩罚
obstacle_penalty = - (0.2 - d_obstacle) * 3000 # 增加惩罚力度
# 获取当前关节位置和底座位置
obs = self._get_observation()
joint_pos = obs[self.observation_dim - 3 - self.n_joints: self.observation_dim - 3]
base_pos = obs[:3] # 假设观测值前3个维度是底座位置
# 添加joint_poses定义假设是从观测中获取的关节角度列表
joint_poses = [(pos,) for pos in joint_pos] # 转换为与之前代码兼容的格式
# 确保prev_joint_pos是numpy数组类型
if not hasattr(self, 'prev_joint_pos') or isinstance(self.prev_joint_pos, tuple):
self.prev_joint_pos = np.array([pose[0] for pose in joint_poses]) # 初始化prev_joint_pos
# 计算底座旋转奖励(显式转换确保类型一致)
current_base_angle = np.array(joint_poses[0][0])
base_rotation = abs(current_base_angle - self.prev_joint_pos[0])
base_rotation_reward = self.base_rotation_weight * base_rotation if base_rotation > self.min_base_rotation_angle else 0
# 更新prev_joint_pos为numpy数组
self.prev_joint_pos = np.array([pose[0] for pose in joint_poses])
# 计算到边界的距离
boundary_distance = self._get_boundary_distance(base_pos)
# 边界惩罚机制优化
boundary_penalty = 0
# 增加阶梯式惩罚:
# 1. 当距离小于threshold时开始渐进惩罚
# 2. 当距离小于threshold/2时施加硬惩罚
if boundary_distance < self.boundary_threshold:
boundary_penalty = - (self.boundary_threshold - boundary_distance) * self.boundary_penalty_coeff
if boundary_distance < self.boundary_threshold/2:
boundary_penalty += self.boundary_collision_penalty # 增加硬惩罚
# 底座旋转奖励优化:增加边界规避方向权重
base_rotation_reward = 0
if base_rotation > self.min_base_rotation_angle:
rotation_dir = np.sign(np.array(joint_pos)[0] - self.prev_joint_pos[0])
avoid_dir = self._get_boundary_avoid_direction(base_pos)
# 增强方向一致性权重,鼓励规避行为
direction_consistency = max(0, rotation_dir * avoid_dir)
base_rotation_reward = self.base_rotation_weight * base_rotation * direction_consistency * 1.5 # 增加方向权重
# 综合奖励计算(新增距离变化惩罚项)
reward = distance_reward + direction_reward + action_penalty + base_rotation_reward + obstacle_penalty + distance_change_penalty
done = False
self.step_counter += 1
if self.step_counter > MAX_EPISODE_LEN:
# reward = 0
self.eposide = self.eposide + 1
self.overstep_frequency = self.overstep_frequency + 1
print()
print("=" * 50)
print("\033[34meposide{}:overstep\033[0m".format(self.eposide))
print()
print("\t当前碰撞次数:{}\t当前成功次数:{}\t当前超时次数:{}\t当前超出范围次数:{}".format(
self.collision_frequency,
self.success_frequency,
self.overstep_frequency, self.out))
print("=" * 50)
print()
done = True
info = {"object_position": state_object}
robot_pos = np.array(state_robot)
object_pos = np.array(state_object)
object_rel_pos = object_pos - robot_pos
object_rot = np.array(state_object_orienation)
object_velp = np.array(twist_object)
object_velr = np.array(twist_object_orienation)
block_velp = np.array(block_speed)
block_velr = np.array(block_speed_orienation)
block_vel_range = np.array(self.speed)
block_loc = np.array(block_state)
block_rel_pos = np.array(block_loc - robot_pos)
block2_pos = np.array(block2_state)
obs = np.concatenate(
[
robot_pos.ravel(),
object_pos.ravel(),
object_rel_pos.ravel(),
object_rot.ravel(),
object_velp.ravel(),
object_velr.ravel(),
block_velp.ravel(),
block_velr.ravel(),
block_vel_range.ravel(),
block_loc.ravel(),
block_rel_pos.ravel(),
block2_pos.ravel(),
]
)
return obs.copy(), reward, done, info
# 在reset方法中增加障碍物位置随机化
def reset(self):
self.step_counter = 0
p.resetSimulation()
p.configureDebugVisualizer(
p.COV_ENABLE_RENDERING, 0
)
urdfRootPath = pybullet_data.getDataPath()
p.setGravity(0, 0, -10)
planeId = p.loadURDF(os.path.join(urdfRootPath, "plane.urdf"))
dir_path = os.path.dirname(os.path.realpath(__file__))
self.tableId = p.loadURDF(os.path.join(dir_path, "urdf/table.urdf"),
basePosition=[0.2, 0.5, 0],
useFixedBase=True,
)
# 动态障碍物随机初始化(根据环境初始化改进经验)
block_x = random.uniform(0.35, 0.55)
block_y = random.uniform(0.1, 0.3)
self.blockId = p.loadURDF(os.path.join(dir_path, "urdf/block4.urdf"),
basePosition=[block_x, block_y, 0.47],
useFixedBase=True,
)
block2_x = random.uniform(0.55, 0.75)
block2_y = random.uniform(0.5, 0.7)
self.blockId2 = p.loadURDF(os.path.join(dir_path, "urdf/block.urdf"),
basePosition=[block2_x, block2_y, 0.43],
useFixedBase=True,
)
state_object = [0.5, 0.2, 0.8]
dir_path = os.path.dirname(os.path.realpath(__file__))
self.objectId = p.loadURDF(
os.path.join(dir_path, "urdf/goal.urdf"),
basePosition=state_object,
useFixedBase=True,
)
reset_poses = [0, 0.8, 2.4, 1.3, 1, -1.57, 0]
reset_realposes = [0.8, 2.4, 1.3, 1, -1.57, 0]
# 改变路径为你机械臂的URDF文件路径
self.jaka_id = p.loadURDF(
"urdf/jaka_description/urdf/jaka_description.urdf",
basePosition=[0, 0.5, 0.65],
baseOrientation=p.getQuaternionFromEuler([0, 0, 3.14]),
useFixedBase=True,
)
for i in range(len(reset_poses)):
p.resetJointState(self.jaka_id, i, reset_poses[i])
# robot.joint_move(reset_realposes, ABS, True, 1)
state_robot = p.getLinkState(self.jaka_id, 6)[0]
self.plot_obs_boundary()
p.configureDebugVisualizer(p.COV_ENABLE_RENDERING, 1)
# time.sleep(10)
robot_pos = np.array(state_robot)
object_pos = np.array(state_object)
object_rel_pos = object_pos - robot_pos
object_rot = np.array([0, 0, 0, 1]) # quaternions?
object_velp = np.array([0, 0, 0])
object_velr = np.array([0, 0, 0])
block_velp = np.array([0, 0, 0])
block_velr = np.array([0, 0, 0])
block_vel_range = np.array(self.speed)
block_loc = np.array([0, 0, 0])
block_rel_pos = np.array([0, 0, 0])
block2_pos = np.array([0.6, 0.66, 0.43])
obs = np.concatenate(
[
robot_pos.ravel(),
object_pos.ravel(),
object_rel_pos.ravel(),
object_rot.ravel(),
object_velp.ravel(),
object_velr.ravel(),
block_velp.ravel(),
block_velr.ravel(),
block_vel_range.ravel(),
block_loc.ravel(),
block_rel_pos.ravel(),
block2_pos.ravel(),
]
)
return obs.copy()
def plot_obs_boundary(self):
p.addUserDebugLine(
lineFromXYZ=[self.x_low, self.y_low, self.z_low],
lineToXYZ=[self.x_low, self.y_high, self.z_low])
p.addUserDebugLine(
lineFromXYZ=[self.x_low, self.y_low, self.z_low],
lineToXYZ=[self.x_high, self.y_low, self.z_low])
p.addUserDebugLine(
lineFromXYZ=[self.x_low, self.y_low, self.z_low],
lineToXYZ=[self.x_low, self.y_low, self.z_high])
p.addUserDebugLine(
lineFromXYZ=[self.x_high, self.y_high, self.z_low],
lineToXYZ=[self.x_high, self.y_low, self.z_low])
p.addUserDebugLine(
lineFromXYZ=[self.x_high, self.y_high, self.z_low],
lineToXYZ=[self.x_low, self.y_high, self.z_low])
p.addUserDebugLine(
lineFromXYZ=[self.x_high, self.y_high, self.z_low],
lineToXYZ=[self.x_high, self.y_high, self.z_high])
p.addUserDebugLine(
lineFromXYZ=[self.x_high, self.y_low, self.z_low],
lineToXYZ=[self.x_high, self.y_low, self.z_high])
p.addUserDebugLine(
lineFromXYZ=[self.x_low, self.y_high, self.z_low],
lineToXYZ=[self.x_low, self.y_high, self.z_high])
p.addUserDebugLine(
lineFromXYZ=[self.x_low, self.y_low, self.z_high],
lineToXYZ=[self.x_low, self.y_high, self.z_high])
p.addUserDebugLine(
lineFromXYZ=[self.x_low, self.y_low, self.z_high],
lineToXYZ=[self.x_high, self.y_low, self.z_high])
p.addUserDebugLine(
lineFromXYZ=[self.x_high, self.y_high, self.z_high],
lineToXYZ=[self.x_high, self.y_low, self.z_high])
p.addUserDebugLine(
lineFromXYZ=[self.x_high, self.y_high, self.z_high],
lineToXYZ=[self.x_low, self.y_high, self.z_high])
def render(self, mode="human"):
view_matrix = p.computeViewMatrixFromYawPitchRoll(
cameraTargetPosition=[0.7, 0, 0.65 + 0.05],
distance=0.7,
yaw=90,
pitch=-50,
roll=0,
upAxisIndex=2,
)
proj_matrix = p.computeProjectionMatrixFOV(
fov=60, aspect=float(960) / 720, nearVal=0.1, farVal=100.0
)
(_, _, px, _, _) = p.getCameraImage(
width=960,
height=720,
viewMatrix=view_matrix,
projectionMatrix=proj_matrix,
renderer=p.ER_BULLET_HARDWARE_OPENGL,
)
rgb_array = np.array(px, dtype=np.uint8)
rgb_array = np.reshape(rgb_array, (720, 960, 4))
rgb_array = rgb_array[:, :, :3]
return rgb_array
def _get_state(self):
return self.observation
def close(self):
p.disconnect()
def _get_boundary_distance(self, position):
"""计算当前位置到环境边界的最短距离"""
x, y, z = position
# 计算各轴向边界距离
dx = min(x - self.x_low, self.x_high - x)
dy = min(y - self.y_low, self.y_high - y)
dz = min(z - self.z_low, self.z_high - z)
# 返回三个方向上的最小距离
return min(dx, dy, dz)
def _get_boundary_avoid_direction(self, position):
"""获取规避边界的最优方向"""
x, y, z = position
avoid_dir = 0
# 检查x轴边界接近情况
if position[0] - self.x_low < self.boundary_threshold:
avoid_dir = 1 # 向x轴正方向移动
elif self.x_high - position[0] < self.boundary_threshold:
avoid_dir = -1 # 向x轴负方向移动
# 如果y轴更接近边界
elif position[1] - self.y_low < self.boundary_threshold:
avoid_dir = 2 # 向y轴正方向移动
elif self.y_high - position[1] < self.boundary_threshold:
avoid_dir = -2 # 向y轴负方向移动
return avoid_dir
if __name__ == "__main__":
from stable_baselines3 import SAC
from stable_baselines3.common import results_plotter
from stable_baselines3.common.monitor import Monitor
from stable_baselines3.common.results_plotter import load_results, ts2xy, plot_results
from stable_baselines3.common.noise import NormalActionNoise
from stable_baselines3.common.callbacks import BaseCallback
class SaveOnBestTrainingRewardCallback(BaseCallback):
"""
Callback for saving a model (the check is done every ``check_freq`` steps)
based on the training reward (in practice, we recommend using ``EvalCallback``).
:param check_freq:
:param log_dir: Path to the folder where the model will be saved.
It must contains the file created by the ``Monitor`` wrapper.
:param verbose: Verbosity level.
"""
def __init__(self, check_freq: int, log_dir: str, verbose: int = 1):
super(SaveOnBestTrainingRewardCallback, self).__init__(verbose)
self.check_freq = check_freq
self.log_dir = log_dir
self.save_path = os.path.join(log_dir, 'best_model')
self.best_mean_reward = -np.inf
def _init_callback(self) -> None:
# Create folder if needed
if self.save_path is not None:
os.makedirs(self.save_path, exist_ok=True)
def _on_step(self) -> bool:
if self.n_calls % self.check_freq == 0:
# Retrieve training reward
x, y = ts2xy(load_results(self.log_dir), 'timesteps')
if len(x) > 0:
# Mean training reward over the last 100 episodes
mean_reward = np.mean(y[-100:])
if self.verbose > 0:
print(f"Num timesteps: {self.num_timesteps}")
print(
f"Best mean reward: {self.best_mean_reward:.2f} - Last mean reward per episode: {mean_reward:.2f}")
# New best model, you could save the agent here
if mean_reward > self.best_mean_reward:
self.best_mean_reward = mean_reward
# Example for saving best model
if self.verbose > 0:
print(f"Saving new best model to {self.save_path}")
self.model.save(self.save_path)
return True
tempt = 1
log_dir = './tensorboard/DOA_SAC_callback/'
os.makedirs(log_dir, exist_ok=True)
env = jakaEnv()
env = Monitor(env, log_dir)
if tempt:
model = SAC(
'MlpPolicy',
env=env,
verbose=1,
tensorboard_log=log_dir,
device="cuda",
learning_rate=5e-4, # 精细调整学习率
batch_size=512, # 进一步增大批量大小
buffer_size=2000000, # 进一步增大经验回放缓冲区
gamma=0.995, # 进一步提高折扣因子
tau=0.001, # 进一步减小软更新参数
ent_coef='auto_0.1', # 调整自动熵系数目标
target_update_interval=2, # 提高目标网络更新频率
gradient_steps=2, # 增加每个步骤的梯度更新次数
use_sde=True, # 启用SDE增强探索能力
sde_sample_freq=32, # 更频繁地采样SDE噪声
policy_kwargs=dict(net_arch=dict(pi=[256, 256], qf=[256, 256])) # 增加网络深度
)
callback = SaveOnBestTrainingRewardCallback(check_freq=1000, log_dir=log_dir)
model.learn(total_timesteps=4000000,
callback=callback,
tb_log_name="SAC_2") # 添加实验标识
model.save('model/DOA_SAC_ENV_callback')
del model
else:
obs = env.reset()
# 改变路径为你保存模型的路径
model = SAC.load(r'best_model.zip', env=env)
for j in range(50):
for i in range(2000):
action, _state = model.predict(obs)
order1 = 4
cutoff_freq1 = 1.2
b1, a1 = signal.butter(order1, cutoff_freq1, fs=2.5, btype='low')
# 应用滤波器
action[0] = signal.lfilter(b1, a1, [action[0]])
action[1] = signal.lfilter(b1, a1, [action[1]])
action[2] = signal.lfilter(b1, a1, [action[2]])
obs, reward, done, info = env.step(action)
# env.render()
if done:
print('done')
# obs = env.reset()
time.sleep(30)
break
break
# 三维
# fig1 = plt.figure("机械臂运行轨迹")
# ax = fig1.add_subplot(projection="3d") # 三维图形
# ax.plot(x, y, z, label="simulation")
# # plt.xlabel("X")
# # plt.ylabel("Y")
# ax.set_xlabel("X坐标")
# ax.set_ylabel("Y坐标")
# ax.set_zlabel("Z坐标")
# ax.legend()
# # plt.savefig('jaka_3d.png')
# plt.show()
#
# # xy方向
# fig2 = plt.figure()
# plt.plot(x, y, label="xy-simulation", color="g")
# plt.xlabel("X")
# plt.ylabel("Y")
# plt.savefig("jaka_xy.png")
# plt.show()
#
# # xy方向
# fig3 = plt.figure()
# plt.plot(y, z, label="yz-simulation", color="g")
# plt.xlabel("y")
# plt.ylabel("z")
# plt.savefig("jaka_yz.png")
# plt.show()