ML-exp-2/code/bp_neural_network-wine_quality.py
fly6516 99f9a797ba refactor(code): 使用 PyTorch 重构 BP 神经网络
- 将 BPNeuralNetwork 类从 NumPy 重新实现为 PyTorch 模型
- 使用 PyTorch 的自动求导和优化器替换手动反向传播和权重更新
- 将数据转换为 PyTorch 张量并支持 GPU 加速
-保留了原始代码的基本结构和功能
2025-03-17 11:43:44 +08:00

88 lines
3.4 KiB
Python

import torch
import torch.nn as nn
import torch.optim as optim
from ucimlrepo import fetch_ucirepo
from sklearn.model_selection import KFold
from sklearn.metrics import accuracy_score
from sklearn.preprocessing import StandardScaler
import numpy as np
# 定义BP神经网络类
class BPNeuralNetwork(nn.Module):
def __init__(self, input_size, hidden_size, output_size):
super(BPNeuralNetwork, self).__init__()
# 初始化输入层、隐藏层和输出层的大小
self.input_size = input_size
self.hidden_size = hidden_size
self.output_size = output_size
# 初始化权重和偏置
self.fc1 = torch.nn.Linear(self.input_size, self.hidden_size) # 输入层到隐藏层的全连接层
self.fc2 = torch.nn.Linear(self.hidden_size, self.output_size) # 隐藏层到输出层的全连接层
def forward(self, x):
# 前向传播
x = torch.sigmoid(self.fc1(x)) # 隐藏层的输出
x = torch.sigmoid(self.fc2(x)) # 输出层的输出
return x
# 将标签转换为one-hot编码
def one_hot_encode(y):
# 确保 y 中的每个元素是字符串
y = np.array([str(label) for label in y])
# 创建一个标签到整数的映射
label_to_int = {label: i for i, label in enumerate(np.unique(y))}
# 将标签转换为整数
y_int = np.array([label_to_int[label] for label in y])
n_values = np.max(y_int) + 1
return torch.eye(n_values)[y_int] # 返回one-hot编码
# fetch dataset
wine_quality = fetch_ucirepo(id=186)
# data (as pandas dataframes)
X = wine_quality.data.features.values # 特征数据
y = wine_quality.data.targets.values # 标签数据
# 特征缩放
scaler = StandardScaler()
X = scaler.fit_transform(X) # 标准化特征数据
# 对标签进行one-hot编码
y_encoded = one_hot_encode(y)
# 将数据转换为PyTorch张量并移至GPU
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
X = torch.tensor(X, dtype=torch.float32).to(device)
y_encoded = y_encoded.to(device)
# 十折交叉验证
kf = KFold(n_splits=10, shuffle=True, random_state=42)
accuracies = []
for train_index, test_index in kf.split(X):
X_train, X_test = X[train_index], X[test_index] # 训练集和测试集的特征数据
y_train, y_test = y_encoded[train_index], y_encoded[test_index] # 训练集和测试集的标签数据
# 创建并训练BP神经网络
nn = BPNeuralNetwork(input_size=X_train.shape[1], hidden_size=20, output_size=y_train.shape[1]).to(device) # 修改隐藏层大小
criterion = torch.nn.MSELoss() # 使用均方误差损失函数
optimizer = optim.SGD(nn.parameters(), lr=0.0001) # 使用随机梯度下降优化器
for epoch in range(50000): # 增加训练轮数
optimizer.zero_grad() # 清零梯度
output = nn(X_train) # 前向传播
loss = criterion(output, y_train) # 计算损失
loss.backward() # 反向传播
optimizer.step() # 更新权重和偏置
if epoch % 1000 == 0:
print(f'Epoch {epoch}, Loss: {loss.item()}') # 打印损失
# 预测并计算准确率
with torch.no_grad():
predictions = nn(X_test)
accuracy = accuracy_score(torch.argmax(y_test, dim=1).cpu().numpy(), torch.argmax(predictions, dim=1).cpu().numpy()) # 计算准确率
accuracies.append(accuracy) # 存储每次交叉验证的准确率
print(f'Average Accuracy: {np.mean(accuracies)}') # 打印平均准确率