import torch import torch.nn as nn import torch.optim as optim from ucimlrepo import fetch_ucirepo from sklearn.model_selection import KFold from sklearn.metrics import accuracy_score from sklearn.preprocessing import StandardScaler import numpy as np # 定义BP神经网络类 class BPNeuralNetwork(nn.Module): def __init__(self, input_size, hidden_size, output_size): super(BPNeuralNetwork, self).__init__() # 初始化输入层、隐藏层和输出层的大小 self.input_size = input_size self.hidden_size = hidden_size self.output_size = output_size # 初始化权重和偏置 self.fc1 = torch.nn.Linear(self.input_size, self.hidden_size) # 输入层到隐藏层的全连接层 self.fc2 = torch.nn.Linear(self.hidden_size, self.output_size) # 隐藏层到输出层的全连接层 def forward(self, x): # 前向传播 x = torch.sigmoid(self.fc1(x)) # 隐藏层的输出 x = torch.sigmoid(self.fc2(x)) # 输出层的输出 return x # 将标签转换为one-hot编码 def one_hot_encode(y): # 确保 y 中的每个元素是字符串 y = np.array([str(label) for label in y]) # 创建一个标签到整数的映射 label_to_int = {label: i for i, label in enumerate(np.unique(y))} # 将标签转换为整数 y_int = np.array([label_to_int[label] for label in y]) n_values = np.max(y_int) + 1 return torch.eye(n_values)[y_int] # 返回one-hot编码 # fetch dataset wine_quality = fetch_ucirepo(id=186) # data (as pandas dataframes) X = wine_quality.data.features.values # 特征数据 y = wine_quality.data.targets.values # 标签数据 # 特征缩放 scaler = StandardScaler() X = scaler.fit_transform(X) # 标准化特征数据 # 对标签进行one-hot编码 y_encoded = one_hot_encode(y) # 将数据转换为PyTorch张量并移至GPU device = torch.device("cuda" if torch.cuda.is_available() else "cpu") X = torch.tensor(X, dtype=torch.float32).to(device) y_encoded = y_encoded.to(device) # 十折交叉验证 kf = KFold(n_splits=10, shuffle=True, random_state=42) accuracies = [] for train_index, test_index in kf.split(X): X_train, X_test = X[train_index], X[test_index] # 训练集和测试集的特征数据 y_train, y_test = y_encoded[train_index], y_encoded[test_index] # 训练集和测试集的标签数据 # 创建并训练BP神经网络 nn = BPNeuralNetwork(input_size=X_train.shape[1], hidden_size=20, output_size=y_train.shape[1]).to(device) # 修改隐藏层大小 criterion = torch.nn.MSELoss() # 使用均方误差损失函数 optimizer = optim.SGD(nn.parameters(), lr=0.0001) # 使用随机梯度下降优化器 for epoch in range(50000): # 增加训练轮数 optimizer.zero_grad() # 清零梯度 output = nn(X_train) # 前向传播 loss = criterion(output, y_train) # 计算损失 loss.backward() # 反向传播 optimizer.step() # 更新权重和偏置 if epoch % 1000 == 0: print(f'Epoch {epoch}, Loss: {loss.item()}') # 打印损失 # 预测并计算准确率 with torch.no_grad(): predictions = nn(X_test) accuracy = accuracy_score(torch.argmax(y_test, dim=1).cpu().numpy(), torch.argmax(predictions, dim=1).cpu().numpy()) # 计算准确率 accuracies.append(accuracy) # 存储每次交叉验证的准确率 print(f'Average Accuracy: {np.mean(accuracies)}') # 打印平均准确率