115 lines
4.8 KiB
Python
115 lines
4.8 KiB
Python
|
import numpy as np
|
||
|
from ucimlrepo import fetch_ucirepo
|
||
|
from sklearn.model_selection import KFold
|
||
|
from sklearn.metrics import accuracy_score
|
||
|
from sklearn.preprocessing import StandardScaler
|
||
|
|
||
|
|
||
|
# 定义BP神经网络类
|
||
|
class BPNeuralNetwork:
|
||
|
def __init__(self, input_size, hidden_size, output_size, learning_rate=0.1):
|
||
|
# 初始化输入层、隐藏层和输出层的大小
|
||
|
self.input_size = input_size
|
||
|
self.hidden_size = hidden_size
|
||
|
self.output_size = output_size
|
||
|
self.learning_rate = learning_rate
|
||
|
|
||
|
# 初始化权重和偏置
|
||
|
self.weights_input_hidden = np.random.randn(self.input_size, self.hidden_size) # 输入层到隐藏层的权重
|
||
|
self.bias_hidden = np.random.randn(self.hidden_size) # 隐藏层的偏置
|
||
|
self.weights_hidden_output = np.random.randn(self.hidden_size, self.output_size) # 隐藏层到输出层的权重
|
||
|
self.bias_output = np.random.randn(self.output_size) # 输出层的偏置
|
||
|
|
||
|
def sigmoid(self, x):
|
||
|
# Sigmoid激活函数
|
||
|
return 1 / (1 + np.exp(-x))
|
||
|
|
||
|
def sigmoid_derivative(self, x):
|
||
|
# Sigmoid激活函数的导数
|
||
|
return x * (1 - x)
|
||
|
|
||
|
def forward(self, X):
|
||
|
# 前向传播
|
||
|
self.hidden_input = np.dot(X, self.weights_input_hidden) + self.bias_hidden # 隐藏层的输入
|
||
|
self.hidden_output = self.sigmoid(self.hidden_input) # 隐藏层的输出
|
||
|
self.final_input = np.dot(self.hidden_output, self.weights_hidden_output) + self.bias_output # 输出层的输入
|
||
|
self.final_output = self.sigmoid(self.final_input) # 输出层的输出
|
||
|
return self.final_output
|
||
|
|
||
|
def backward(self, X, y, output):
|
||
|
# 反向传播
|
||
|
output_error = y - output # 输出层的误差
|
||
|
output_delta = output_error * self.sigmoid_derivative(output) # 输出层的误差信号
|
||
|
|
||
|
hidden_error = output_delta.dot(self.weights_hidden_output.T) # 隐藏层的误差
|
||
|
hidden_delta = hidden_error * self.sigmoid_derivative(self.hidden_output) # 隐藏层的误差信号
|
||
|
|
||
|
# 更新权重和偏置
|
||
|
self.weights_hidden_output += self.hidden_output.T.dot(output_delta) * self.learning_rate # 更新隐藏层到输出层的权重
|
||
|
self.bias_output += np.sum(output_delta, axis=0) * self.learning_rate # 更新输出层的偏置
|
||
|
self.weights_input_hidden += X.T.dot(hidden_delta) * self.learning_rate # 更新输入层到隐藏层的权重
|
||
|
self.bias_hidden += np.sum(hidden_delta, axis=0) * self.learning_rate # 更新隐藏层的偏置
|
||
|
|
||
|
def train(self, X, y, epochs):
|
||
|
# 训练网络
|
||
|
for epoch in range(epochs):
|
||
|
output = self.forward(X) # 前向传播
|
||
|
self.backward(X, y, output) # 反向传播
|
||
|
if epoch % 1000 == 0:
|
||
|
loss = np.mean(np.square(y - output)) # 计算损失
|
||
|
print(f'Epoch {epoch}, Loss: {loss}') # 打印损失
|
||
|
|
||
|
def predict(self, X):
|
||
|
# 预测
|
||
|
return np.round(self.forward(X)) # 四舍五入预测结果
|
||
|
|
||
|
# 将标签转换为one-hot编码
|
||
|
def one_hot_encode(y):
|
||
|
# 确保 y 中的每个元素是字符串
|
||
|
y = np.array([str(label) for label in y])
|
||
|
# 创建一个标签到整数的映射
|
||
|
label_to_int = {label: i for i, label in enumerate(np.unique(y))}
|
||
|
# 将标签转换为整数
|
||
|
y_int = np.array([label_to_int[label] for label in y])
|
||
|
n_values = np.max(y_int) + 1
|
||
|
return np.eye(n_values)[y_int] # 返回one-hot编码
|
||
|
|
||
|
# fetch dataset
|
||
|
wine_quality = fetch_ucirepo(id=186)
|
||
|
|
||
|
# data (as pandas dataframes)
|
||
|
X = wine_quality.data.features.values # 特征数据
|
||
|
y = wine_quality.data.targets.values # 标签数据
|
||
|
|
||
|
# metadata
|
||
|
print(wine_quality.metadata)
|
||
|
|
||
|
# variable information
|
||
|
print(wine_quality.variables)
|
||
|
|
||
|
# 特征缩放
|
||
|
scaler = StandardScaler()
|
||
|
X = scaler.fit_transform(X) # 标准化特征数据
|
||
|
|
||
|
# 对标签进行one-hot编码
|
||
|
y_encoded = one_hot_encode(y)
|
||
|
|
||
|
# 十折交叉验证
|
||
|
kf = KFold(n_splits=10, shuffle=True, random_state=42)
|
||
|
accuracies = []
|
||
|
|
||
|
for train_index, test_index in kf.split(X):
|
||
|
X_train, X_test = X[train_index], X[test_index] # 训练集和测试集的特征数据
|
||
|
y_train, y_test = y_encoded[train_index], y_encoded[test_index] # 训练集和测试集的标签数据
|
||
|
|
||
|
# 创建并训练BP神经网络
|
||
|
nn = BPNeuralNetwork(input_size=X_train.shape[1], hidden_size=20, output_size=y_train.shape[1], learning_rate=0.0001) # 修改隐藏层大小和学习率
|
||
|
nn.train(X_train, y_train, epochs=50000) # 增加训练轮数
|
||
|
|
||
|
# 预测并计算准确率
|
||
|
predictions = nn.predict(X_test)
|
||
|
accuracy = accuracy_score(np.argmax(y_test, axis=1), np.argmax(predictions, axis=1)) # 计算准确率
|
||
|
accuracies.append(accuracy) # 存储每次交叉验证的准确率
|
||
|
|
||
|
print(f'Average Accuracy: {np.mean(accuracies)}') # 打印平均准确率
|