- 重构了代码结构,优化了导入顺序和格式 - 改进了模型训练流程,添加了早停机制和学习率调度器- 增加了模型测试和可视化部分的代码 -优化了量子卷积层和模型的实现 - 调整了训练参数和数据预处理方法
3.3 KiB
3.3 KiB
1 | epoch | train_acc | valid_acc | train_loss | valid_loss | |
---|---|---|---|---|---|---|
2 | 0 | 1 | 0.391375 | 0.5882056451612904 | 1.7793689422607422 | 1.3356874796652025 |
3 | 1 | 2 | 0.617125 | 0.6365927419354839 | 1.059556163787842 | 0.9690603344671188 |
4 | 2 | 3 | 0.663125 | 0.6577620967741935 | 0.9102170023918151 | 0.9078671547674364 |
5 | 3 | 4 | 0.69 | 0.6819556451612904 | 0.8537670917510987 | 0.8649420180628377 |
6 | 4 | 5 | 0.71125 | 0.7056451612903226 | 0.8021836678981781 | 0.8317571128568342 |
7 | 5 | 6 | 0.719375 | 0.6844758064516129 | 0.7773117737770081 | 0.8293971457789021 |
8 | 6 | 7 | 0.733 | 0.7247983870967742 | 0.7432277894020081 | 0.7570091389840649 |
9 | 7 | 8 | 0.727125 | 0.7051411290322581 | 0.7392586808204651 | 0.7708722833664187 |
10 | 8 | 9 | 0.740375 | 0.7091733870967742 | 0.716008551120758 | 0.7547545788749572 |
11 | 9 | 10 | 0.74775 | 0.7091733870967742 | 0.6988923935890198 | 0.7634256799374858 |
12 | 10 | 11 | 0.75025 | 0.7328629032258065 | 0.6836859595775604 | 0.7220065324537216 |
13 | 11 | 12 | 0.75525 | 0.7313508064516129 | 0.6790840411186219 | 0.7320531125991575 |
14 | 12 | 13 | 0.755875 | 0.734375 | 0.6686462206840516 | 0.7067360877990723 |
15 | 13 | 14 | 0.755875 | 0.7338709677419355 | 0.659578008890152 | 0.6924379564100697 |
16 | 14 | 15 | 0.758625 | 0.7217741935483871 | 0.6591809678077698 | 0.7092515037905786 |
17 | 15 | 16 | 0.770125 | 0.7474798387096774 | 0.6366513178348542 | 0.6689942498360911 |
18 | 16 | 17 | 0.76975 | 0.75 | 0.64143789935112 | 0.6781372427940369 |
19 | 17 | 18 | 0.766625 | 0.7469758064516129 | 0.6327295961380005 | 0.6749444469328849 |
20 | 18 | 19 | 0.772125 | 0.7298387096774194 | 0.6213552060127259 | 0.6950428524324971 |
21 | 19 | 20 | 0.771625 | 0.7560483870967742 | 0.619529750585556 | 0.6620656597998834 |
22 | 20 | 21 | 0.77425 | 0.7459677419354839 | 0.6170263500213623 | 0.6944894117693747 |
23 | 21 | 22 | 0.77375 | 0.7379032258064516 | 0.610548350572586 | 0.698592597438443 |
24 | 22 | 23 | 0.774125 | 0.7494959677419355 | 0.6073116481304168 | 0.6649176555295144 |
25 | 23 | 24 | 0.78 | 0.75 | 0.601892656326294 | 0.6502023070089279 |
26 | 24 | 25 | 0.777875 | 0.7671370967741935 | 0.5965238115787506 | 0.6416350141648324 |
27 | 25 | 26 | 0.7875 | 0.751008064516129 | 0.584319313287735 | 0.6557927843063108 |
28 | 26 | 27 | 0.784625 | 0.7651209677419355 | 0.5858220131397247 | 0.6265111680953733 |
29 | 27 | 28 | 0.77975 | 0.7610887096774194 | 0.5928270950317382 | 0.6353864400617538 |
30 | 28 | 29 | 0.780625 | 0.7520161290322581 | 0.5824392430782318 | 0.6569667564284417 |
31 | 29 | 30 | 0.78475 | 0.7686491935483871 | 0.5810435285568237 | 0.6306867743692091 |
32 | 30 | 31 | 0.789 | 0.7706653225806451 | 0.5672282783985138 | 0.6261125274242894 |
33 | 31 | 32 | 0.78525 | 0.7560483870967742 | 0.5757509377002716 | 0.6505500414679127 |
34 | 32 | 33 | 0.792 | 0.7681451612903226 | 0.5613697295188904 | 0.629849144527989 |
35 | 33 | 34 | 0.793875 | 0.7620967741935484 | 0.5625830183029175 | 0.6189906856706066 |
36 | 34 | 35 | 0.791875 | 0.7681451612903226 | 0.5602230775356293 | 0.6212261732547514 |
37 | 35 | 36 | 0.794625 | 0.7615927419354839 | 0.5545250961780548 | 0.619811047469416 |
38 | 36 | 37 | 0.794625 | 0.7701612903225806 | 0.5573954427242279 | 0.6205428954093687 |
39 | 37 | 38 | 0.79425 | 0.764616935483871 | 0.5514744529724122 | 0.628905875067557 |
40 | 38 | 39 | 0.792375 | 0.7842741935483871 | 0.5618353080749512 | 0.5954909113145643 |
41 | 39 | 40 | 0.796375 | 0.7711693548387096 | 0.5491654114723206 | 0.6137347759739045 |
42 | 40 | 41 | 0.799 | 0.7641129032258065 | 0.5372960684299469 | 0.6470560056547965 |
43 | 41 | 42 | 0.800375 | 0.7671370967741935 | 0.5395989503860473 | 0.6211921880322118 |
44 | 42 | 43 | 0.806 | 0.7671370967741935 | 0.5370515692234039 | 0.6075864828401997 |
45 | 43 | 44 | 0.801875 | 0.7605846774193549 | 0.5388010408878326 | 0.5891174308715328 |
46 | 44 | 45 | 0.800875 | 0.766633064516129 | 0.539761929512024 | 0.610026998865989 |
47 | 45 | 46 | 0.802375 | 0.780241935483871 | 0.5270701496601105 | 0.6000283591208919 |
48 | 46 | 47 | 0.799875 | 0.7772177419354839 | 0.5320828959941865 | 0.5864833074231302 |
49 | 47 | 48 | 0.807 | 0.7837701612903226 | 0.5309389193058014 | 0.5761975809451072 |