DeepQuantom-CNN/data/notebook2/qccnn_metrics.csv
fly6516 9266859f0a refactor(Modify.py): 重构代码并改进模型训练流程
- 重构了代码结构,优化了导入顺序和格式
- 改进了模型训练流程,添加了早停机制和学习率调度器- 增加了模型测试和可视化部分的代码
-优化了量子卷积层和模型的实现
- 调整了训练参数和数据预处理方法
2025-06-25 15:07:08 +08:00

3.3 KiB

1epochtrain_accvalid_acctrain_lossvalid_loss
2010.3913750.58820564516129041.77936894226074221.3356874796652025
3120.6171250.63659274193548391.0595561637878420.9690603344671188
4230.6631250.65776209677419350.91021700239181510.9078671547674364
5340.690.68195564516129040.85376709175109870.8649420180628377
6450.711250.70564516129032260.80218366789817810.8317571128568342
7560.7193750.68447580645161290.77731177377700810.8293971457789021
8670.7330.72479838709677420.74322778940200810.7570091389840649
9780.7271250.70514112903225810.73925868082046510.7708722833664187
10890.7403750.70917338709677420.7160085511207580.7547545788749572
119100.747750.70917338709677420.69889239358901980.7634256799374858
1210110.750250.73286290322580650.68368595957756040.7220065324537216
1311120.755250.73135080645161290.67908404111862190.7320531125991575
1412130.7558750.7343750.66864622068405160.7067360877990723
1513140.7558750.73387096774193550.6595780088901520.6924379564100697
1614150.7586250.72177419354838710.65918096780776980.7092515037905786
1715160.7701250.74747983870967740.63665131783485420.6689942498360911
1816170.769750.750.641437899351120.6781372427940369
1917180.7666250.74697580645161290.63272959613800050.6749444469328849
2018190.7721250.72983870967741940.62135520601272590.6950428524324971
2119200.7716250.75604838709677420.6195297505855560.6620656597998834
2220210.774250.74596774193548390.61702635002136230.6944894117693747
2321220.773750.73790322580645160.6105483505725860.698592597438443
2422230.7741250.74949596774193550.60731164813041680.6649176555295144
2523240.780.750.6018926563262940.6502023070089279
2624250.7778750.76713709677419350.59652381157875060.6416350141648324
2725260.78750.7510080645161290.5843193132877350.6557927843063108
2826270.7846250.76512096774193550.58582201313972470.6265111680953733
2927280.779750.76108870967741940.59282709503173820.6353864400617538
3028290.7806250.75201612903225810.58243924307823180.6569667564284417
3129300.784750.76864919354838710.58104352855682370.6306867743692091
3230310.7890.77066532258064510.56722827839851380.6261125274242894
3331320.785250.75604838709677420.57575093770027160.6505500414679127
3432330.7920.76814516129032260.56136972951889040.629849144527989
3533340.7938750.76209677419354840.56258301830291750.6189906856706066
3634350.7918750.76814516129032260.56022307753562930.6212261732547514
3735360.7946250.76159274193548390.55452509617805480.619811047469416
3836370.7946250.77016129032258060.55739544272422790.6205428954093687
3937380.794250.7646169354838710.55147445297241220.628905875067557
4038390.7923750.78427419354838710.56183530807495120.5954909113145643
4139400.7963750.77116935483870960.54916541147232060.6137347759739045
4240410.7990.76411290322580650.53729606842994690.6470560056547965
4341420.8003750.76713709677419350.53959895038604730.6211921880322118
4442430.8060.76713709677419350.53705156922340390.6075864828401997
4543440.8018750.76058467741935490.53880104088783260.5891174308715328
4644450.8008750.7666330645161290.5397619295120240.610026998865989
4745460.8023750.7802419354838710.52707014966011050.6000283591208919
4846470.7998750.77721774193548390.53208289599418650.5864833074231302
4947480.8070.78377016129032260.53093891930580140.5761975809451072