- 重构了代码结构,优化了导入顺序和格式 - 改进了模型训练流程,添加了早停机制和学习率调度器- 增加了模型测试和可视化部分的代码 -优化了量子卷积层和模型的实现 - 调整了训练参数和数据预处理方法
2.2 KiB
2.2 KiB
1 | epoch | train_acc | valid_acc | train_loss | valid_loss | |
---|---|---|---|---|---|---|
2 | 0 | 1 | 0.59325 | 0.6854838709677419 | 1.1784187927246095 | 0.8956879992638865 |
3 | 1 | 2 | 0.713 | 0.7127016129032258 | 0.788702152967453 | 0.7735376723351017 |
4 | 2 | 3 | 0.755 | 0.7389112903225806 | 0.7006268813610077 | 0.7271041427889178 |
5 | 3 | 4 | 0.763625 | 0.7273185483870968 | 0.668900458574295 | 0.7277685692233424 |
6 | 4 | 5 | 0.76275 | 0.748991935483871 | 0.6469288661479949 | 0.672559670863613 |
7 | 5 | 6 | 0.773625 | 0.7434475806451613 | 0.6203210880756378 | 0.6748099394382969 |
8 | 6 | 7 | 0.771625 | 0.7494959677419355 | 0.6234635796546936 | 0.6763338706185741 |
9 | 7 | 8 | 0.784125 | 0.7580645161290323 | 0.5965014040470124 | 0.6313219945276937 |
10 | 8 | 9 | 0.781 | 0.7419354838709677 | 0.5893729448318481 | 0.6552943125847848 |
11 | 9 | 10 | 0.785375 | 0.7600806451612904 | 0.582163923740387 | 0.6227685501498561 |
12 | 10 | 11 | 0.790625 | 0.7605846774193549 | 0.5674120993614197 | 0.6145914264263646 |
13 | 11 | 12 | 0.7995 | 0.765625 | 0.5617314722537995 | 0.6158498919779255 |
14 | 12 | 13 | 0.7965 | 0.7883064516129032 | 0.5522617139816284 | 0.581030644716755 |
15 | 13 | 14 | 0.803125 | 0.7817540322580645 | 0.5367116575241089 | 0.5911272004727395 |
16 | 14 | 15 | 0.80025 | 0.7752016129032258 | 0.5398472018241882 | 0.5930967292478008 |
17 | 15 | 16 | 0.808125 | 0.7620967741935484 | 0.5326456694602967 | 0.6306540206555398 |
18 | 16 | 17 | 0.8145 | 0.7772177419354839 | 0.5097175936698913 | 0.5843374094655437 |
19 | 17 | 18 | 0.817375 | 0.7918346774193549 | 0.5045695571899415 | 0.5643920071663395 |
20 | 18 | 19 | 0.81175 | 0.7681451612903226 | 0.5022978014945984 | 0.593349628871487 |
21 | 19 | 20 | 0.824375 | 0.7928427419354839 | 0.4974315061569214 | 0.5595071181174247 |
22 | 20 | 21 | 0.818 | 0.7762096774193549 | 0.49526858401298524 | 0.5555580258369446 |
23 | 21 | 22 | 0.815625 | 0.7862903225806451 | 0.4976941578388214 | 0.5627694274148634 |
24 | 22 | 23 | 0.825875 | 0.7908266129032258 | 0.4906779823303223 | 0.5514134312829664 |
25 | 23 | 24 | 0.823875 | 0.7953629032258065 | 0.4869117760658264 | 0.5559701804191836 |
26 | 24 | 25 | 0.823 | 0.7807459677419355 | 0.48527450203895567 | 0.5541293746040713 |
27 | 25 | 26 | 0.824625 | 0.795866935483871 | 0.4811685870885849 | 0.5384060884675672 |
28 | 26 | 27 | 0.827875 | 0.7938508064516129 | 0.48096660792827606 | 0.5493545234203339 |
29 | 27 | 28 | 0.826875 | 0.7998991935483871 | 0.477142098903656 | 0.5478304624557495 |
30 | 28 | 29 | 0.82725 | 0.7948588709677419 | 0.47373487854003904 | 0.547797841410483 |
31 | 29 | 30 | 0.825375 | 0.7847782258064516 | 0.47746446084976196 | 0.5636355328944421 |
32 | 30 | 31 | 0.828875 | 0.7757056451612904 | 0.4754366238117218 | 0.5671144060550197 |
33 | 31 | 32 | 0.8315 | 0.7908266129032258 | 0.4769072663784027 | 0.5523799340571126 |