train(qccnn): 调整 QCCNN 模型参数并优化训练过程
-调整早停耐心值和学习率调度器参数 - 移除数据集中的缩放变换- 修正训练集和测试集的加载方式 - 优化 RandomQCCNN 和 QCCNN模型结构 - 调整电路深度和输入形状 - 优化 VGG 模型的全连接层大小
This commit is contained in:
parent
9266859f0a
commit
cb15dfb430
393999
Modify.ipynb
393999
Modify.ipynb
File diff suppressed because one or more lines are too long
82
Modify.py
82
Modify.py
@ -71,10 +71,10 @@ def train_model(model, criterion, optimizer, train_loader, valid_loader, num_epo
|
||||
valid_acc_list = []
|
||||
|
||||
best_valid_acc = 0.0
|
||||
patience = 10 # 早停耐心值
|
||||
patience = 50 # 早停耐心值
|
||||
counter = 0 # 计数器
|
||||
|
||||
scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='max', factor=0.5, patience=10)
|
||||
scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='max', factor=0.5, patience=25)
|
||||
|
||||
with tqdm(total=num_epochs) as pbar:
|
||||
for epoch in range(num_epochs):
|
||||
@ -170,7 +170,6 @@ trans1 = transforms.Compose([
|
||||
transforms.RandomHorizontalFlip(), # 随机水平翻转
|
||||
transforms.RandomRotation(10), # 随机旋转±10度
|
||||
transforms.ColorJitter(brightness=0.2, contrast=0.2), # 颜色调整
|
||||
transforms.Resize((18, 18)), # 调整大小为18x18
|
||||
transforms.ToTensor(), # 转换为张量
|
||||
transforms.Normalize((0.5,), (0.5,)) # 归一化到[-1, 1]
|
||||
])
|
||||
@ -179,11 +178,10 @@ trans2 = transforms.Compose([
|
||||
transforms.RandomHorizontalFlip(), # 随机水平翻转
|
||||
transforms.RandomRotation(10), # 随机旋转±10度
|
||||
transforms.ColorJitter(brightness=0.2, contrast=0.2), # 颜色调整
|
||||
transforms.Resize((16, 16)), # 调整大小为16x16
|
||||
transforms.ToTensor(), # 转换为张量
|
||||
transforms.Normalize((0.5,), (0.5,)) # 归一化到[-1, 1]
|
||||
])
|
||||
train_dataset = FashionMNIST(root='./data/notebook2', train=False, transform=trans1,download=True)
|
||||
train_dataset = FashionMNIST(root='./data/notebook2', train=True, transform=trans1,download=True)
|
||||
test_dataset = FashionMNIST(root='./data/notebook2', train=False, transform=trans1,download=True)
|
||||
|
||||
# 定义训练集和测试集的比例
|
||||
@ -256,26 +254,36 @@ class RandomQCCNN(nn.Module):
|
||||
def __init__(self):
|
||||
super(RandomQCCNN, self).__init__()
|
||||
self.conv = nn.Sequential(
|
||||
RandomQuantumConvolutionalLayer(nqubit=4, num_circuits=3, seed=1024), # num_circuits=3代表我们在quanv1层只用了3个量子卷积核
|
||||
RandomQuantumConvolutionalLayer(nqubit=4, num_circuits=3), # num_circuits=3代表我们在quanv1层只用了3个量子卷积核
|
||||
nn.BatchNorm2d(3), # 添加批量归一化
|
||||
nn.ReLU(),
|
||||
nn.MaxPool2d(kernel_size=2, stride=1),
|
||||
# 添加形状检查层以确保尺寸正确
|
||||
nn.Conv2d(3, 6, kernel_size=2, stride=1),
|
||||
nn.BatchNorm2d(6), # 添加批量归一化
|
||||
nn.ReLU(),
|
||||
nn.MaxPool2d(kernel_size=2, stride=1)
|
||||
# 添加自适应池化层确保固定输出尺寸
|
||||
nn.AdaptiveMaxPool2d((9, 9)) # 确保输出固定尺寸
|
||||
)
|
||||
self.fc = nn.Sequential(
|
||||
nn.Linear(6 * 6 * 6, 1024),
|
||||
nn.BatchNorm1d(1024), # 添加批量归一化
|
||||
nn.Dropout(0.5), # 增加dropout比例
|
||||
# 根据自适应池化后的固定尺寸计算输入维度
|
||||
nn.Linear(6 * 9 * 9, 1024), # 确保与自适应池化输出匹配
|
||||
nn.BatchNorm1d(1024),
|
||||
nn.Dropout(0.5),
|
||||
nn.ReLU(),
|
||||
nn.Linear(1024, 10)
|
||||
nn.Linear(1024, 512),
|
||||
nn.BatchNorm1d(512),
|
||||
nn.ReLU(),
|
||||
nn.Linear(512, 10)
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
# 添加详细的形状检查输出
|
||||
print(f"Input shape: {x.shape}")
|
||||
x = self.conv(x)
|
||||
print(f"After conv layers: {x.shape}") # 添加中间形状检查
|
||||
x = x.reshape(x.size(0), -1)
|
||||
print(f"After flatten: {x.shape}") # 添加展平后形状检查
|
||||
x = self.fc(x)
|
||||
return x
|
||||
#%%
|
||||
@ -335,9 +343,9 @@ class ParameterizedQuantumConvolutionalLayer(nn.Module):
|
||||
|
||||
def circuit(self, nqubit):
|
||||
cir = dq.QubitCircuit(nqubit)
|
||||
cir.rxlayer(encode=True) #对原论文的量子线路结构并无影响,只是做了一个数据编码的操作
|
||||
cir.rxlayer(encode=True) # 数据编码
|
||||
cir.barrier()
|
||||
for iter in range(4): #对应原论文中一个量子卷积线路上的深度为4,可控参数一共16个
|
||||
for iter in range(5): # 将线路深度从4增加到5
|
||||
cir.rylayer()
|
||||
cir.cnot_ring()
|
||||
cir.barrier()
|
||||
@ -346,20 +354,30 @@ class ParameterizedQuantumConvolutionalLayer(nn.Module):
|
||||
return cir
|
||||
|
||||
def forward(self, x):
|
||||
kernel_size, stride = 2, 2
|
||||
# [64, 1, 18, 18] -> [64, 1, 9, 18, 2] -> [64, 1, 9, 9, 2, 2]
|
||||
kernel_size, stride = 3, 3 # 使用3x3数据块
|
||||
x_unflod = x.unfold(2, kernel_size, stride).unfold(3, kernel_size, stride)
|
||||
w = int((x.shape[-1] - kernel_size) / stride + 1)
|
||||
x_reshape = x_unflod.reshape(-1, self.nqubit)
|
||||
print(f"Input shape: {x.shape}") # 添加输入形状检查
|
||||
print(f"Unfolded shape: {x_unflod.shape}") # 添加展开后形状检查
|
||||
|
||||
# 动态计算w值并验证特征图尺寸
|
||||
w = x_unflod.shape[2] # 使用实际展开后的尺寸
|
||||
# 确保展平后的总元素数与量子线路输入匹配
|
||||
x_reshape = x_unflod.reshape(-1, kernel_size * kernel_size) # 将每个3x3块展平为9维
|
||||
|
||||
exps = []
|
||||
for cir in self.cirs: # out_channels
|
||||
for cir in self.cirs:
|
||||
cir(x_reshape)
|
||||
exp = cir.expectation()
|
||||
exps.append(exp)
|
||||
|
||||
exps = torch.stack(exps, dim=1)
|
||||
exps = exps.reshape(x.shape[0], 3, w, w)
|
||||
out_channels = len(self.cirs) # 使用动态计算而非硬编码值
|
||||
# 验证总元素数一致性
|
||||
assert exps.numel() == x.shape[0] * out_channels * w * w, \
|
||||
f"Element count mismatch: {exps.numel()} vs {x.shape[0] * out_channels * w * w}"
|
||||
# 确保展平后的总元素数与量子线路输出匹配
|
||||
exps = exps.reshape(x.shape[0], out_channels, w, w)
|
||||
print(f"Reshaped shape: {exps.shape}") # 添加最终形状检查
|
||||
return exps
|
||||
#%%
|
||||
# 此处我们可视化其中一个量子卷积核的线路结构:
|
||||
@ -371,18 +389,26 @@ class QCCNN(nn.Module):
|
||||
def __init__(self):
|
||||
super(QCCNN, self).__init__()
|
||||
self.conv = nn.Sequential(
|
||||
ParameterizedQuantumConvolutionalLayer(nqubit=4, num_circuits=3),
|
||||
nn.BatchNorm2d(3), # 添加批量归一化
|
||||
ParameterizedQuantumConvolutionalLayer(nqubit=4, num_circuits=3), # 恢复为4量子比特
|
||||
nn.BatchNorm2d(3), # 恢复原始通道数
|
||||
nn.ReLU(),
|
||||
nn.MaxPool2d(kernel_size=2, stride=1)
|
||||
nn.MaxPool2d(kernel_size=2, stride=1),
|
||||
nn.Conv2d(3, 6, kernel_size=1), # 添加1x1卷积层增强通道间信息交互
|
||||
nn.BatchNorm2d(6),
|
||||
nn.ReLU(),
|
||||
nn.AdaptiveMaxPool2d((9, 9)) # 确保输出固定尺寸
|
||||
)
|
||||
|
||||
self.fc = nn.Sequential(
|
||||
nn.Linear(8 * 8 * 3, 128),
|
||||
nn.BatchNorm1d(128), # 添加批量归一化
|
||||
nn.Dropout(0.5), # 增加dropout比例
|
||||
# 根据新的特征图大小调整输入维度:6通道、9x9特征图 => 6*9*9=486
|
||||
nn.Linear(6 * 9 * 9, 1024), # 修改为正确的输入维度
|
||||
nn.BatchNorm1d(1024),
|
||||
nn.Dropout(0.5),
|
||||
nn.ReLU(),
|
||||
nn.Linear(128, 10)
|
||||
nn.Linear(1024, 512),
|
||||
nn.BatchNorm1d(512),
|
||||
nn.ReLU(),
|
||||
nn.Linear(512, 10)
|
||||
)
|
||||
|
||||
def forward(self, x):
|
||||
@ -398,7 +424,7 @@ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
||||
model = QCCNN()
|
||||
model.to(device)
|
||||
criterion = nn.CrossEntropyLoss()
|
||||
optimizer = optim.AdamW(model.parameters(), lr=3e-4, weight_decay=1e-5) # 使用AdamW优化器和适当的权重衰减
|
||||
optimizer = optim.AdamW(model.parameters(), lr=5e-4, weight_decay=5e-5, amsgrad=True) # 优化学习率和weight_decay参数
|
||||
optim_model, metrics = train_model(model, criterion, optimizer, train_loader, valid_loader, num_epochs, device)
|
||||
torch.save(optim_model.state_dict(), './data/notebook2/qccnn_weights.pt') # 保存训练好的模型参数,用于后续的推理或测试
|
||||
pd.DataFrame(metrics).to_csv('./data/notebook2/qccnn_metrics.csv', index='None') # 保存模型训练过程,用于后续图标展示
|
||||
@ -425,7 +451,7 @@ VGG = nn.Sequential(
|
||||
vgg_block(1, 32, 2), # 增加通道数和调整卷积层数量
|
||||
vgg_block(32, 64, 2),
|
||||
nn.Flatten(),
|
||||
nn.Linear(64 * 4 * 4, 256), # 调整全连接层大小
|
||||
nn.Linear(64 * 7 * 7, 256), # 修改为正确的输入维度
|
||||
nn.BatchNorm1d(256), # 添加批量归一化
|
||||
nn.ReLU(),
|
||||
nn.Dropout(0.5), # 增加dropout比例
|
||||
|
Binary file not shown.
Binary file not shown.
@ -1,49 +1,61 @@
|
||||
,epoch,train_acc,valid_acc,train_loss,valid_loss
|
||||
0,1,0.391375,0.5882056451612904,1.7793689422607422,1.3356874796652025
|
||||
1,2,0.617125,0.6365927419354839,1.059556163787842,0.9690603344671188
|
||||
2,3,0.663125,0.6577620967741935,0.9102170023918151,0.9078671547674364
|
||||
3,4,0.69,0.6819556451612904,0.8537670917510987,0.8649420180628377
|
||||
4,5,0.71125,0.7056451612903226,0.8021836678981781,0.8317571128568342
|
||||
5,6,0.719375,0.6844758064516129,0.7773117737770081,0.8293971457789021
|
||||
6,7,0.733,0.7247983870967742,0.7432277894020081,0.7570091389840649
|
||||
7,8,0.727125,0.7051411290322581,0.7392586808204651,0.7708722833664187
|
||||
8,9,0.740375,0.7091733870967742,0.716008551120758,0.7547545788749572
|
||||
9,10,0.74775,0.7091733870967742,0.6988923935890198,0.7634256799374858
|
||||
10,11,0.75025,0.7328629032258065,0.6836859595775604,0.7220065324537216
|
||||
11,12,0.75525,0.7313508064516129,0.6790840411186219,0.7320531125991575
|
||||
12,13,0.755875,0.734375,0.6686462206840516,0.7067360877990723
|
||||
13,14,0.755875,0.7338709677419355,0.659578008890152,0.6924379564100697
|
||||
14,15,0.758625,0.7217741935483871,0.6591809678077698,0.7092515037905786
|
||||
15,16,0.770125,0.7474798387096774,0.6366513178348542,0.6689942498360911
|
||||
16,17,0.76975,0.75,0.64143789935112,0.6781372427940369
|
||||
17,18,0.766625,0.7469758064516129,0.6327295961380005,0.6749444469328849
|
||||
18,19,0.772125,0.7298387096774194,0.6213552060127259,0.6950428524324971
|
||||
19,20,0.771625,0.7560483870967742,0.619529750585556,0.6620656597998834
|
||||
20,21,0.77425,0.7459677419354839,0.6170263500213623,0.6944894117693747
|
||||
21,22,0.77375,0.7379032258064516,0.610548350572586,0.698592597438443
|
||||
22,23,0.774125,0.7494959677419355,0.6073116481304168,0.6649176555295144
|
||||
23,24,0.78,0.75,0.601892656326294,0.6502023070089279
|
||||
24,25,0.777875,0.7671370967741935,0.5965238115787506,0.6416350141648324
|
||||
25,26,0.7875,0.751008064516129,0.584319313287735,0.6557927843063108
|
||||
26,27,0.784625,0.7651209677419355,0.5858220131397247,0.6265111680953733
|
||||
27,28,0.77975,0.7610887096774194,0.5928270950317382,0.6353864400617538
|
||||
28,29,0.780625,0.7520161290322581,0.5824392430782318,0.6569667564284417
|
||||
29,30,0.78475,0.7686491935483871,0.5810435285568237,0.6306867743692091
|
||||
30,31,0.789,0.7706653225806451,0.5672282783985138,0.6261125274242894
|
||||
31,32,0.78525,0.7560483870967742,0.5757509377002716,0.6505500414679127
|
||||
32,33,0.792,0.7681451612903226,0.5613697295188904,0.629849144527989
|
||||
33,34,0.793875,0.7620967741935484,0.5625830183029175,0.6189906856706066
|
||||
34,35,0.791875,0.7681451612903226,0.5602230775356293,0.6212261732547514
|
||||
35,36,0.794625,0.7615927419354839,0.5545250961780548,0.619811047469416
|
||||
36,37,0.794625,0.7701612903225806,0.5573954427242279,0.6205428954093687
|
||||
37,38,0.79425,0.764616935483871,0.5514744529724122,0.628905875067557
|
||||
38,39,0.792375,0.7842741935483871,0.5618353080749512,0.5954909113145643
|
||||
39,40,0.796375,0.7711693548387096,0.5491654114723206,0.6137347759739045
|
||||
40,41,0.799,0.7641129032258065,0.5372960684299469,0.6470560056547965
|
||||
41,42,0.800375,0.7671370967741935,0.5395989503860473,0.6211921880322118
|
||||
42,43,0.806,0.7671370967741935,0.5370515692234039,0.6075864828401997
|
||||
43,44,0.801875,0.7605846774193549,0.5388010408878326,0.5891174308715328
|
||||
44,45,0.800875,0.766633064516129,0.539761929512024,0.610026998865989
|
||||
45,46,0.802375,0.780241935483871,0.5270701496601105,0.6000283591208919
|
||||
46,47,0.799875,0.7772177419354839,0.5320828959941865,0.5864833074231302
|
||||
47,48,0.807,0.7837701612903226,0.5309389193058014,0.5761975809451072
|
||||
0,1,0.6956875,0.7605280748663101,0.8211820412079494,0.6387985139925849
|
||||
1,2,0.7645416666666667,0.787850935828877,0.6182981830437978,0.5789241027385793
|
||||
2,3,0.7837916666666667,0.7884358288770054,0.5628398391008377,0.5625918760975415
|
||||
3,4,0.7983958333333333,0.8048128342245989,0.5307413680950801,0.5154492698888727
|
||||
4,5,0.8067291666666667,0.8016377005347594,0.5082246935367585,0.5231997628900457
|
||||
5,6,0.812,0.8068181818181818,0.48933065092563627,0.516960185957465
|
||||
6,7,0.8195416666666666,0.8124164438502673,0.47495536905527114,0.4998339513406397
|
||||
7,8,0.8227708333333333,0.8236965240641712,0.46346363043785094,0.4768249858668781
|
||||
8,9,0.8255625,0.8194351604278075,0.45567453374465305,0.4821742607310494
|
||||
9,10,0.8315,0.825701871657754,0.44574370459715523,0.46175671978430316
|
||||
10,11,0.8308125,0.8133355614973262,0.4422872595389684,0.4978986528308634
|
||||
11,12,0.8348125,0.8301303475935828,0.4311412891546885,0.4576163932601398
|
||||
12,13,0.8376041666666667,0.8193516042780749,0.42240108201901116,0.4770477739247409
|
||||
13,14,0.8385625,0.8282921122994652,0.418784587085247,0.4626272647457327
|
||||
14,15,0.8436041666666667,0.8350601604278075,0.41075574096043904,0.44758253596364495
|
||||
15,16,0.8421875,0.8313001336898396,0.4109448278148969,0.446757927218223
|
||||
16,17,0.8435625,0.8346423796791443,0.40630192184448244,0.4484061913534919
|
||||
17,18,0.8458541666666667,0.8385695187165776,0.40021699021259943,0.4367518940552033
|
||||
18,19,0.847125,0.8307152406417112,0.3976554674903552,0.44405238075371095
|
||||
19,20,0.8483125,0.8386530748663101,0.3941614780028661,0.4367401426169962
|
||||
20,21,0.8502916666666667,0.8384024064171123,0.3900964806675911,0.4330310898031143
|
||||
21,22,0.850875,0.8379010695187166,0.38837515221039454,0.43586291532146737
|
||||
22,23,0.8517291666666666,0.8390708556149733,0.3842192193667094,0.43854525677341827
|
||||
23,24,0.8533958333333334,0.8319685828877005,0.37822781956195833,0.43952455710281024
|
||||
24,25,0.8521041666666667,0.8424966577540107,0.38170819969971975,0.42412006687671744
|
||||
25,26,0.8566875,0.8418282085561497,0.3745041756629944,0.42809357434351814
|
||||
26,27,0.8584583333333333,0.8440842245989305,0.3699158744017283,0.4245206856313236
|
||||
27,28,0.8557708333333334,0.841995320855615,0.37092407973607383,0.422711970892182
|
||||
28,29,0.8590625,0.8429979946524064,0.36935959541797636,0.42758023595427447
|
||||
29,30,0.8596041666666666,0.8488469251336899,0.3606020367145538,0.4196776971619397
|
||||
30,31,0.8629166666666667,0.8481784759358288,0.3595893513560295,0.41790072508355514
|
||||
31,32,0.8611875,0.8426637700534759,0.3579425945480665,0.42967644118688963
|
||||
32,33,0.8640416666666667,0.8465909090909091,0.3525094211200873,0.41836620102272953
|
||||
33,34,0.8626875,0.8418282085561497,0.3546509333451589,0.4231800782011155
|
||||
34,35,0.8648333333333333,0.8489304812834224,0.3503157667120298,0.4183035452257503
|
||||
35,36,0.8643958333333334,0.8440006684491979,0.3498730379541715,0.4190998378603216
|
||||
36,37,0.87175,0.8534425133689839,0.32715407966574034,0.4019120936406487
|
||||
37,38,0.8728541666666667,0.8485127005347594,0.32552256182829536,0.4089040935517632
|
||||
38,39,0.876375,0.852105614973262,0.32196691662073135,0.40356063794962227
|
||||
39,40,0.8771875,0.85235628342246,0.31610893772045773,0.4059840437562708
|
||||
40,41,0.8779583333333333,0.8501002673796791,0.3148737497230371,0.40458757402425144
|
||||
41,42,0.8783541666666667,0.8511029411764706,0.31425037946303686,0.40025874677507634
|
||||
42,43,0.879125,0.8485127005347594,0.31071714136004447,0.41301197538720097
|
||||
43,44,0.8840833333333333,0.8587065508021391,0.297863828599453,0.38672817749454375
|
||||
44,45,0.8851875,0.8551136363636364,0.29304139083623887,0.3945167065463602
|
||||
45,46,0.8866666666666667,0.8526069518716578,0.2949504310488701,0.4007673603009413
|
||||
46,47,0.887875,0.8566176470588235,0.2923740311563015,0.39658332620075043
|
||||
47,48,0.8865625,0.8573696524064172,0.29297807250420255,0.39060447871047543
|
||||
48,49,0.8876458333333334,0.8531918449197861,0.29198914767305056,0.4017815204227672
|
||||
49,50,0.8903125,0.8556985294117647,0.28550282220045725,0.3990818190383401
|
||||
50,51,0.8921041666666667,0.8613803475935828,0.2811181089083354,0.38583621303027965
|
||||
51,52,0.8912708333333333,0.8602941176470589,0.2825057551066081,0.38899426345519206
|
||||
52,53,0.8914375,0.8542780748663101,0.28124154203136764,0.4000103534224199
|
||||
53,54,0.8925416666666667,0.8579545454545454,0.2816228237350782,0.39209578182289306
|
||||
54,55,0.8924375,0.8584558823529411,0.2785300021370252,0.38789646502803354
|
||||
55,56,0.8932083333333334,0.8587065508021391,0.27603148049116133,0.39326987443442013
|
||||
56,57,0.8931458333333333,0.8557820855614974,0.27797147376338643,0.4011580384670094
|
||||
57,58,0.8956875,0.8595421122994652,0.2708657040695349,0.3850319666817864
|
||||
58,59,0.8921458333333333,0.8613803475935828,0.274147473325332,0.3814745011495396
|
||||
59,60,0.8947291666666667,0.8602941176470589,0.2712443074285984,0.39393253767872877
|
||||
|
|
Binary file not shown.
Binary file not shown.
@ -1,34 +1,78 @@
|
||||
,epoch,train_acc,valid_acc,train_loss,valid_loss
|
||||
0,1,0.561125,0.6476814516129032,1.271985122203827,0.9911825291572078
|
||||
1,2,0.676375,0.6668346774193549,0.9134431419372558,0.8937955517922679
|
||||
2,3,0.699125,0.6824596774193549,0.8243759956359863,0.8520721235582905
|
||||
3,4,0.716625,0.6995967741935484,0.7818560593128204,0.8005917687569896
|
||||
4,5,0.725125,0.7101814516129032,0.745261854171753,0.8037946531849522
|
||||
5,6,0.733375,0.7061491935483871,0.7344184167385102,0.7732808570707997
|
||||
6,7,0.737875,0.7253024193548387,0.7150477197170257,0.74149090051651
|
||||
7,8,0.74325,0.7253024193548387,0.7022454526424408,0.7516527022084882
|
||||
8,9,0.742625,0.7298387096774194,0.7041031284332275,0.7247120468847214
|
||||
9,10,0.747875,0.7116935483870968,0.6772661633491516,0.7338270487323884
|
||||
10,11,0.757875,0.7212701612903226,0.6562292041778565,0.7387931039256435
|
||||
11,12,0.761625,0.7328629032258065,0.6542983632087708,0.725050816612859
|
||||
12,13,0.75925,0.7318548387096774,0.6493379819393158,0.7001086867624714
|
||||
13,14,0.767375,0.7379032258064516,0.6460576868057251,0.6988139988914612
|
||||
14,15,0.765875,0.7288306451612904,0.6339491362571716,0.7128441218406923
|
||||
15,16,0.763125,0.7368951612903226,0.6262373595237732,0.714297366719092
|
||||
16,17,0.76925,0.7227822580645161,0.6279029569625855,0.7181522269402781
|
||||
17,18,0.77025,0.7449596774193549,0.6159816448688507,0.6757595616002237
|
||||
18,19,0.7745,0.7283266129032258,0.6136245548725128,0.6998546681096477
|
||||
19,20,0.775375,0.7469758064516129,0.6000997524261474,0.6749713065162781
|
||||
20,21,0.7805,0.748991935483871,0.5928600332736969,0.6656959902855658
|
||||
21,22,0.77525,0.7444556451612904,0.599046837568283,0.6857193170055267
|
||||
22,23,0.785,0.7384072580645161,0.5875316572189331,0.6785462142959717
|
||||
23,24,0.778375,0.765625,0.588378502368927,0.627939272311426
|
||||
24,25,0.78575,0.7459677419354839,0.5700427904129028,0.6502643679418871
|
||||
25,26,0.7805,0.75,0.5785817315578461,0.6712307555060233
|
||||
26,27,0.78675,0.7474798387096774,0.5676946561336518,0.6555941143343526
|
||||
27,28,0.787875,0.7505040322580645,0.575938116312027,0.6507430134281036
|
||||
28,29,0.789,0.7605846774193549,0.5655779435634612,0.6520830373610219
|
||||
29,30,0.790625,0.7434475806451613,0.5578647639751434,0.6789213486256138
|
||||
30,31,0.787375,0.7565524193548387,0.5687701859474182,0.649224087115257
|
||||
31,32,0.79575,0.7560483870967742,0.5432633152008056,0.6388471222692921
|
||||
32,33,0.7895,0.7595766129032258,0.5557173223495483,0.6391933618053314
|
||||
0,1,0.6058333333333333,0.7088068181818182,1.077100011587143,0.7878920158600424
|
||||
1,2,0.7224166666666667,0.7269385026737968,0.7470338317950567,0.7390924543939172
|
||||
2,3,0.7520208333333334,0.7539271390374331,0.6676628764470418,0.6713398865518723
|
||||
3,4,0.7725208333333333,0.7676303475935828,0.612583932240804,0.6310215724662026
|
||||
4,5,0.7787916666666667,0.7807486631016043,0.5905240491827329,0.594515474244235
|
||||
5,6,0.7867083333333333,0.7794117647058824,0.568865264693896,0.5900490468836086
|
||||
6,7,0.7952708333333334,0.7901069518716578,0.5486233344872793,0.553959414283222
|
||||
7,8,0.7990416666666667,0.7973763368983957,0.5307548115452131,0.5483398674962355
|
||||
8,9,0.8028958333333334,0.7942847593582888,0.5225638653437297,0.553332871613018
|
||||
9,10,0.808875,0.7990474598930482,0.5071384527683258,0.5478345090373952
|
||||
10,11,0.8109166666666666,0.8043114973262032,0.49932783031463623,0.5302995911893997
|
||||
11,12,0.8152083333333333,0.7998830213903744,0.4876467382510503,0.5369620672203003
|
||||
12,13,0.8218333333333333,0.8055648395721925,0.47221228990952174,0.5228660841357899
|
||||
13,14,0.818875,0.8045621657754011,0.47462575109799704,0.5175498661829189
|
||||
14,15,0.8245625,0.8102439839572193,0.46200620504220324,0.5206660962997274
|
||||
15,16,0.8271875,0.817346256684492,0.4543743284543355,0.4972638836837707
|
||||
16,17,0.8277916666666667,0.8086564171122995,0.45034414579470955,0.5051890009227283
|
||||
17,18,0.827625,0.8130848930481284,0.445495897213618,0.5063204698384127
|
||||
18,19,0.8327291666666666,0.8187667112299465,0.4373013471563657,0.49322714222306235
|
||||
19,20,0.835875,0.8227774064171123,0.428063592116038,0.48620352627121827
|
||||
20,21,0.8376875,0.825701871657754,0.42721951069434483,0.4824375149241106
|
||||
21,22,0.8393333333333334,0.8237800802139037,0.424452906926473,0.47128429227971774
|
||||
22,23,0.8394791666666667,0.8235294117647058,0.4193731239239375,0.4921083778621041
|
||||
23,24,0.8411041666666667,0.8219418449197861,0.4158371254205704,0.4766464689995516
|
||||
24,25,0.8403958333333333,0.8226102941176471,0.4133129887978236,0.4774917462133469
|
||||
25,26,0.8443541666666666,0.8231116310160428,0.40567960069576897,0.48197355627376126
|
||||
26,27,0.8448958333333333,0.8270387700534759,0.4060484048128128,0.48230106714256304
|
||||
27,28,0.8460625,0.8224431818181818,0.403180761963129,0.48200917403328225
|
||||
28,29,0.8495416666666666,0.8254512032085561,0.39154566899935406,0.4732334581925907
|
||||
29,30,0.849375,0.8205213903743316,0.3910754985809326,0.5025412492095468
|
||||
30,31,0.850125,0.8200200534759359,0.3879919012586276,0.48824962750475676
|
||||
31,32,0.8501666666666666,0.8283756684491979,0.3852265829642614,0.4738096959769407
|
||||
32,33,0.8533125,0.8280414438502673,0.3842975225051244,0.480888257131857
|
||||
33,34,0.8546666666666667,0.8279578877005348,0.3802658775647481,0.4736704102015113
|
||||
34,35,0.8553541666666666,0.8287934491978609,0.37693077965577443,0.47027840429448825
|
||||
35,36,0.8574583333333333,0.8280414438502673,0.37416908142964045,0.47105003949155144
|
||||
36,37,0.8575416666666666,0.8333890374331551,0.370725477874279,0.4729995278113666
|
||||
37,38,0.8593333333333333,0.8318850267379679,0.3660616307258606,0.46004778090964027
|
||||
38,39,0.86125,0.8230280748663101,0.36278441416223844,0.4792340671155542
|
||||
39,40,0.8597291666666667,0.8328877005347594,0.36306345409154894,0.4713420571490405
|
||||
40,41,0.8594583333333333,0.8338903743315508,0.35881871738036475,0.457705247131261
|
||||
41,42,0.86125,0.8338903743315508,0.35548474109172823,0.4744296157583196
|
||||
42,43,0.8638958333333333,0.8328877005347594,0.35729147561391195,0.46916984149160235
|
||||
43,44,0.864375,0.8360628342245989,0.3560072028040886,0.45340159527439483
|
||||
44,45,0.8649791666666666,0.829879679144385,0.35113127034902575,0.4705522551256068
|
||||
45,46,0.8642708333333333,0.832302807486631,0.3466692521572113,0.4682676112428706
|
||||
46,47,0.8671458333333333,0.8295454545454546,0.34586968237161636,0.4741511169601889
|
||||
47,48,0.867125,0.8333890374331551,0.3455539164741834,0.47975461392160407
|
||||
48,49,0.8672916666666667,0.8318014705882353,0.34170353756348293,0.4724194825811182
|
||||
49,50,0.8685416666666667,0.830548128342246,0.33824845480918886,0.47551511706196686
|
||||
50,51,0.8786875,0.8408255347593583,0.31427997442086536,0.45161250855195967
|
||||
51,52,0.8811666666666667,0.8393215240641712,0.3106038907766342,0.45226032346646416
|
||||
52,53,0.881875,0.8417446524064172,0.3050905155738195,0.44453552421082787
|
||||
53,54,0.8818958333333333,0.8420788770053476,0.30438282175858816,0.45232303249325984
|
||||
54,55,0.8853958333333334,0.8393215240641712,0.29754234209656716,0.45854009632120796
|
||||
55,56,0.8851041666666667,0.8404913101604278,0.29953089368343355,0.4524733354063595
|
||||
56,57,0.8845625,0.8411597593582888,0.29662314279874163,0.45404982789952486
|
||||
57,58,0.8874166666666666,0.8431651069518716,0.29427229724327725,0.45166250935850294
|
||||
58,59,0.8859375,0.8394050802139037,0.29326443988084794,0.46354111527057895
|
||||
59,60,0.888375,0.8429979946524064,0.2878838664491971,0.4655548495086119
|
||||
60,61,0.8886666666666667,0.8424966577540107,0.2877097588280837,0.45055208335267033
|
||||
61,62,0.889125,0.8429144385026738,0.2842213006118933,0.4635044741917421
|
||||
62,63,0.8885625,0.8435828877005348,0.2865720265607039,0.4594836203172245
|
||||
63,64,0.8917708333333333,0.8379010695187166,0.285613534172376,0.4660476203111404
|
||||
64,65,0.8910625,0.8383188502673797,0.28201638598243395,0.4701039531332924
|
||||
65,66,0.8908958333333333,0.8407419786096256,0.2792068747878075,0.47005820457629344
|
||||
66,67,0.8923333333333333,0.8440006684491979,0.2773614428540071,0.4646621039685081
|
||||
67,68,0.8912291666666666,0.8459224598930482,0.28061300626397134,0.45556305787142587
|
||||
68,69,0.8947083333333333,0.8403241978609626,0.27382597197095554,0.4730077214578894
|
||||
69,70,0.8913958333333334,0.8402406417112299,0.2796522062718868,0.4642943452226924
|
||||
70,71,0.8939375,0.8412433155080213,0.27323526923855146,0.4593185937022143
|
||||
71,72,0.8947708333333333,0.841326871657754,0.2720908187329769,0.4730970057892927
|
||||
72,73,0.8960208333333334,0.8417446524064172,0.26792943899333477,0.47570018247168333
|
||||
73,74,0.8949791666666667,0.8415775401069518,0.27027500013510386,0.4757912041828594
|
||||
74,75,0.9015208333333333,0.8446691176470589,0.257486442198356,0.4704125145858622
|
||||
75,76,0.9023333333333333,0.8451704545454546,0.25169081447521846,0.46167185049962234
|
||||
76,77,0.9014583333333334,0.8432486631016043,0.2498825814574957,0.462763199672342
|
||||
|
|
Binary file not shown.
Binary file not shown.
@ -1,86 +1,101 @@
|
||||
,epoch,train_acc,valid_acc,train_loss,valid_loss
|
||||
0,1,0.575125,0.7011088709677419,2.031563010215759,1.8535375249001287
|
||||
1,2,0.723875,0.7515120967741935,1.7430778923034669,1.713461822079074
|
||||
2,3,0.76425,0.7525201612903226,1.6991203842163085,1.7051894049490652
|
||||
3,4,0.779875,0.7716733870967742,1.6807003259658813,1.690080665772961
|
||||
4,5,0.79525,0.7696572580645161,1.6654855661392212,1.6926762519344207
|
||||
5,6,0.80175,0.7888104838709677,1.6598792200088501,1.6711357831954956
|
||||
6,7,0.80875,0.7721774193548387,1.6529147624969482,1.6847506146277151
|
||||
7,8,0.812375,0.8004032258064516,1.649049828529358,1.6597587523921844
|
||||
8,9,0.815375,0.7893145161290323,1.6458229179382324,1.6707303101016628
|
||||
9,10,0.825,0.811491935483871,1.6370085287094116,1.6518691432091497
|
||||
10,11,0.832375,0.795866935483871,1.630222158432007,1.6616583139665666
|
||||
11,12,0.83225,0.8145161290322581,1.6293829317092896,1.6454557026586225
|
||||
12,13,0.834875,0.8125,1.6268642024993896,1.6500283018235238
|
||||
13,14,0.840875,0.8104838709677419,1.6199358901977539,1.652194688397069
|
||||
14,15,0.83975,0.8069556451612904,1.6210605192184449,1.6520756982987927
|
||||
15,16,0.84175,0.8004032258064516,1.6195698108673096,1.6582853217278757
|
||||
16,17,0.838625,0.8049395161290323,1.6228710346221924,1.656198097813514
|
||||
17,18,0.83775,0.8140120967741935,1.6226149969100951,1.6462942131104008
|
||||
18,19,0.845375,0.8251008064516129,1.6150365982055663,1.6358921681680987
|
||||
19,20,0.85125,0.8296370967741935,1.6097205333709717,1.6333312757553593
|
||||
20,21,0.851875,0.8210685483870968,1.609424132347107,1.6388044895664338
|
||||
21,22,0.850375,0.8210685483870968,1.6101643466949462,1.6369191561975787
|
||||
22,23,0.858125,0.8185483870967742,1.6031983375549317,1.6421872877305554
|
||||
23,24,0.857125,0.8361895161290323,1.6038059520721435,1.62519553015309
|
||||
24,25,0.854,0.8301411290322581,1.606280044555664,1.6290803609355804
|
||||
25,26,0.858375,0.8119959677419355,1.6011180095672608,1.648349738890125
|
||||
26,27,0.861375,0.8371975806451613,1.6000273780822754,1.6237776010267195
|
||||
27,28,0.8705,0.8351814516129032,1.5907322645187378,1.6240986316434798
|
||||
28,29,0.87175,0.828125,1.5896439476013184,1.6316479982868317
|
||||
29,30,0.867375,0.8266129032258065,1.5936143741607667,1.632056209348863
|
||||
30,31,0.86575,0.8377016129032258,1.5949567575454713,1.6240303862479426
|
||||
31,32,0.86975,0.8336693548387096,1.5907692136764526,1.6251203167823054
|
||||
32,33,0.86975,0.8397177419354839,1.5919580411911012,1.6214879328204739
|
||||
33,34,0.872375,0.8422379032258065,1.5886561880111694,1.6194973222671016
|
||||
34,35,0.876,0.8331653225806451,1.585767653465271,1.6247131862948019
|
||||
35,36,0.871875,0.8392137096774194,1.5895709590911866,1.6215527211466143
|
||||
36,37,0.871125,0.8245967741935484,1.590462643623352,1.6370407227546937
|
||||
37,38,0.87325,0.8301411290322581,1.5876847248077393,1.6306157150576193
|
||||
38,39,0.8705,0.8240927419354839,1.590844289779663,1.634965923524672
|
||||
39,40,0.88125,0.8402217741935484,1.5803495874404907,1.6220719968118975
|
||||
40,41,0.881875,0.8462701612903226,1.5788077726364136,1.614263488400367
|
||||
41,42,0.87625,0.8487903225806451,1.5843929862976074,1.6131737078389814
|
||||
42,43,0.88175,0.842741935483871,1.5789586782455445,1.6184405088424683
|
||||
43,44,0.880375,0.8417338709677419,1.5802030544281005,1.6189708786626016
|
||||
44,45,0.880375,0.8492943548387096,1.5803771505355835,1.610948174230514
|
||||
45,46,0.877625,0.8523185483870968,1.5828620948791503,1.6089561793111986
|
||||
46,47,0.882125,0.8442540322580645,1.578727219581604,1.6160847948443504
|
||||
47,48,0.872875,0.8392137096774194,1.5874832077026366,1.6228746021947553
|
||||
48,49,0.884125,0.8371975806451613,1.5771635084152222,1.6237398655183855
|
||||
49,50,0.88975,0.8341733870967742,1.5712118272781372,1.6256768280459988
|
||||
50,51,0.876,0.8432459677419355,1.585065812110901,1.6188401445265739
|
||||
51,52,0.883,0.844758064516129,1.5785351629257203,1.6169025359615203
|
||||
52,53,0.889125,0.8548387096774194,1.5723771095275878,1.607426397262081
|
||||
53,54,0.88625,0.8518145161290323,1.5749757404327394,1.6076742141477522
|
||||
54,55,0.891125,0.8452620967741935,1.5695797872543336,1.6156867473356185
|
||||
55,56,0.891625,0.8497983870967742,1.5691107511520386,1.6118658050414054
|
||||
56,57,0.883375,0.8508064516129032,1.577266471862793,1.6087883749315817
|
||||
57,58,0.891625,0.8422379032258065,1.5702907581329346,1.6168161553721274
|
||||
58,59,0.89375,0.8553427419354839,1.5679762859344482,1.6071604336461713
|
||||
59,60,0.885875,0.8482862903225806,1.5749410953521727,1.6108381056016492
|
||||
60,61,0.891875,0.8417338709677419,1.5696327953338622,1.6187968907817718
|
||||
61,62,0.894,0.8392137096774194,1.5671770153045654,1.6208721822307957
|
||||
62,63,0.891125,0.8392137096774194,1.569726734161377,1.6224797733368412
|
||||
63,64,0.89325,0.8518145161290323,1.568245210647583,1.606977516605008
|
||||
64,65,0.895125,0.8462701612903226,1.5658181638717652,1.6140611633177726
|
||||
65,66,0.89175,0.8568548387096774,1.5686321334838866,1.6044510756769488
|
||||
66,67,0.896375,0.8412298387096774,1.5650024271011354,1.6208048520549652
|
||||
67,68,0.8895,0.8477822580645161,1.571241024017334,1.6136699338113107
|
||||
68,69,0.901625,0.8472782258064516,1.5600450325012207,1.612250724146443
|
||||
69,70,0.89025,0.8306451612903226,1.5705311574935914,1.630635638390818
|
||||
70,71,0.89675,0.8538306451612904,1.5637341051101685,1.6056317244806597
|
||||
71,72,0.897,0.8412298387096774,1.5633089447021484,1.6192954970944313
|
||||
72,73,0.900375,0.8503024193548387,1.560647201538086,1.6097132775091356
|
||||
73,74,0.895625,0.8533266129032258,1.565330421447754,1.6075265484471475
|
||||
74,75,0.895125,0.8543346774193549,1.565690894126892,1.6060891266792052
|
||||
75,76,0.900625,0.8608870967741935,1.560530616760254,1.6011101891917567
|
||||
76,77,0.897125,0.8563508064516129,1.563725378036499,1.6037284789546844
|
||||
77,78,0.89175,0.8482862903225806,1.5693257989883422,1.6122698245509979
|
||||
78,79,0.90225,0.8487903225806451,1.5589981718063355,1.6111104180735927
|
||||
79,80,0.893375,0.8442540322580645,1.5669814805984497,1.6161983090062295
|
||||
80,81,0.897125,0.8573588709677419,1.56400607585907,1.6040064134905416
|
||||
81,82,0.898,0.8568548387096774,1.5621892538070679,1.6044225615839804
|
||||
82,83,0.89075,0.8503024193548387,1.5697740039825439,1.6114465228972896
|
||||
83,84,0.900625,0.8598790322580645,1.5606124105453492,1.6002429416102748
|
||||
84,85,0.89825,0.8553427419354839,1.5628600664138794,1.603792409743032
|
||||
0,1,0.767875,0.8360628342245989,1.753534612496694,1.6362467181873832
|
||||
1,2,0.8333125,0.8577038770053476,1.6276749771436057,1.6030110356641962
|
||||
2,3,0.8611875,0.8703208556149733,1.60025262260437,1.5910939386184202
|
||||
3,4,0.8715833333333334,0.8587065508021391,1.5890283988316853,1.601965536408246
|
||||
4,5,0.8776041666666666,0.8759191176470589,1.5827694902420044,1.5844863908176117
|
||||
5,6,0.8843958333333334,0.8757520053475936,1.5761419967015584,1.5849310975661253
|
||||
6,7,0.88675,0.8812667112299465,1.573840765953064,1.5789309529697193
|
||||
7,8,0.8909375,0.8832720588235294,1.569781884988149,1.5779090036045422
|
||||
8,9,0.8903333333333333,0.8875334224598931,1.570390274365743,1.5736284517349406
|
||||
9,10,0.8941458333333333,0.890625,1.5664398628870646,1.5700276994450206
|
||||
10,11,0.8940208333333334,0.8915441176470589,1.5668807325363159,1.5694875258175447
|
||||
11,12,0.8958958333333333,0.8737466577540107,1.5646815473238627,1.5868047845554862
|
||||
12,13,0.8980625,0.8921290106951871,1.5629661572774252,1.5691035067971377
|
||||
13,14,0.900625,0.8943850267379679,1.560197625319163,1.566351128771981
|
||||
14,15,0.8988125,0.8884525401069518,1.561814420223236,1.572067444337243
|
||||
15,16,0.8991041666666667,0.8928810160427807,1.5614849192301432,1.5675410924748303
|
||||
16,17,0.9010208333333334,0.8932152406417112,1.5596694407463074,1.5670097658340945
|
||||
17,18,0.9034583333333334,0.8913770053475936,1.5576222189267477,1.56979562700751
|
||||
18,19,0.9042083333333333,0.8852774064171123,1.5566549801826477,1.5758734877734262
|
||||
19,20,0.9005833333333333,0.890625,1.560306779384613,1.5699780733190118
|
||||
20,21,0.91125,0.9029913101604278,1.5499087982177735,1.5577653244854932
|
||||
21,22,0.9131041666666667,0.906667780748663,1.54771670850118,1.5544780492782593
|
||||
22,23,0.9148125,0.9045788770053476,1.5459488903681438,1.5563749999286018
|
||||
23,24,0.9155833333333333,0.9033255347593583,1.5449249391555786,1.5577488563914987
|
||||
24,25,0.9170208333333333,0.9065842245989305,1.5440529939333598,1.5541542717479766
|
||||
25,26,0.9180208333333333,0.9048295454545454,1.5431619186401366,1.5560473452277361
|
||||
26,27,0.9175208333333333,0.9046624331550802,1.5432857065200805,1.5563587473038045
|
||||
27,28,0.9199583333333333,0.9085895721925134,1.5409181524912516,1.5526812178565856
|
||||
28,29,0.9184583333333334,0.9052473262032086,1.5422742649714152,1.555272618079568
|
||||
29,30,0.9212291666666667,0.9065006684491979,1.53969158522288,1.554516376021074
|
||||
30,31,0.9207916666666667,0.9100935828877005,1.5402175769805908,1.5506398645951787
|
||||
31,32,0.9214375,0.9079211229946524,1.539174134572347,1.5536619998554495
|
||||
32,33,0.9203333333333333,0.9089237967914439,1.540758513132731,1.5520596727330418
|
||||
33,34,0.920625,0.9049966577540107,1.5403572120666504,1.5559145416167968
|
||||
34,35,0.9203125,0.9095086898395722,1.5404717030525208,1.551519107053624
|
||||
35,36,0.9235,0.908673128342246,1.537489187558492,1.5522340115378885
|
||||
36,37,0.9236666666666666,0.9076704545454546,1.5371040493647257,1.5535466779362073
|
||||
37,38,0.9271458333333333,0.9108455882352942,1.5338874877293904,1.550052744182036
|
||||
38,39,0.928375,0.9119318181818182,1.5327118910153708,1.5489872643016875
|
||||
39,40,0.9302916666666666,0.9157754010695187,1.530610190709432,1.5451570577162472
|
||||
40,41,0.9313541666666667,0.9134358288770054,1.5297347887357076,1.5474902193814037
|
||||
41,42,0.9315208333333334,0.9144385026737968,1.5294018096923827,1.546497144163611
|
||||
42,43,0.9323125,0.9160260695187166,1.5288680585225423,1.5444984174667196
|
||||
43,44,0.9319791666666667,0.9151069518716578,1.5289348866144816,1.5459555961231497
|
||||
44,45,0.9333541666666667,0.9186163101604278,1.5275377634366354,1.5426336552370041
|
||||
45,46,0.932375,0.9125167112299465,1.528664146900177,1.5481219285312184
|
||||
46,47,0.932375,0.9180314171122995,1.528616013844808,1.543393959973585
|
||||
47,48,0.9353541666666667,0.9174465240641712,1.5259391600290935,1.5431863923761295
|
||||
48,49,0.9332291666666667,0.9116811497326203,1.527786935488383,1.5487734449101005
|
||||
49,50,0.9352916666666666,0.9159425133689839,1.525529363632202,1.5448988389203893
|
||||
50,51,0.9351666666666667,0.9190340909090909,1.5257512016296386,1.541433523682987
|
||||
51,52,0.9358125,0.9166945187165776,1.525342579046885,1.5442416878307568
|
||||
52,53,0.9355625,0.9197860962566845,1.5253059350649516,1.5413460323517336
|
||||
53,54,0.936625,0.9142713903743316,1.5245349135398865,1.5465437422461688
|
||||
54,55,0.9349791666666667,0.9161931818181818,1.525785480340322,1.5452430726372621
|
||||
55,56,0.9368333333333333,0.9174465240641712,1.524029705842336,1.5432787445139757
|
||||
56,57,0.9355833333333333,0.9158589572192514,1.5253107420603433,1.5446410478755115
|
||||
57,58,0.9371875,0.9207052139037433,1.524094797929128,1.5405435536634475
|
||||
58,59,0.9376458333333333,0.9199532085561497,1.5234766112963358,1.5406819996349315
|
||||
59,60,0.9391875,0.9189505347593583,1.5217385093371074,1.5418526864944295
|
||||
60,61,0.9380208333333333,0.9172794117647058,1.5229359103838602,1.54353828162433
|
||||
61,62,0.9387708333333333,0.9206216577540107,1.5224510963757834,1.5403235111644562
|
||||
62,63,0.93975,0.9156082887700535,1.5212798911730447,1.545105798996706
|
||||
63,64,0.9397708333333333,0.921875,1.5213380891482036,1.53904527202647
|
||||
64,65,0.9388541666666667,0.9197860962566845,1.5220589057604472,1.5410850934166322
|
||||
65,66,0.9384166666666667,0.9163602941176471,1.5225912384986877,1.5446943541899085
|
||||
66,67,0.9405,0.9212901069518716,1.5205388652483622,1.539675323083439
|
||||
67,68,0.9412291666666667,0.9225434491978609,1.519922403494517,1.53815110800738
|
||||
68,69,0.9401041666666666,0.9145220588235294,1.520717616558075,1.5464129702930145
|
||||
69,70,0.9411875,0.921875,1.5197122866312662,1.5391668482897753
|
||||
70,71,0.94,0.9188669786096256,1.5209512915611267,1.5418487353758379
|
||||
71,72,0.9394583333333333,0.9202874331550802,1.5213834778467814,1.540625613003491
|
||||
72,73,0.9419583333333333,0.9192012032085561,1.5191686747868856,1.5421639017880282
|
||||
73,74,0.9420208333333333,0.9211229946524064,1.5191353003184,1.539851359505067
|
||||
74,75,0.9431458333333333,0.9225434491978609,1.517710240205129,1.5381846899654776
|
||||
75,76,0.9452708333333333,0.9207887700534759,1.5158586444854736,1.5403157555483242
|
||||
76,77,0.9455625,0.9209558823529411,1.5154005877176921,1.539823994917028
|
||||
77,78,0.9458333333333333,0.9228776737967914,1.515006558418274,1.5379077584985743
|
||||
78,79,0.9461041666666666,0.9209558823529411,1.5149241960843405,1.5400247025617304
|
||||
79,80,0.9460208333333333,0.9239639037433155,1.515042960802714,1.5368424086647237
|
||||
80,81,0.9453541666666667,0.9212065508021391,1.515584836324056,1.5400443440452616
|
||||
81,82,0.9463958333333333,0.9239639037433155,1.5146392253239949,1.5368295028247936
|
||||
82,83,0.9471041666666666,0.9226270053475936,1.514121623357137,1.5383771377451279
|
||||
83,84,0.946625,0.9215407754010695,1.5143028028806051,1.5394194024131898
|
||||
84,85,0.9472916666666666,0.9249665775401069,1.5138665714263917,1.5362410226607706
|
||||
85,86,0.9468958333333334,0.9239639037433155,1.5140059588750203,1.5370322306525899
|
||||
86,87,0.947625,0.9238803475935828,1.513320836544037,1.537034041741315
|
||||
87,88,0.948375,0.9229612299465241,1.5128038795789083,1.5373781154499973
|
||||
88,89,0.9495,0.9250501336898396,1.5117765822410583,1.5355126124652312
|
||||
89,90,0.9491458333333334,0.9232118983957219,1.512057636419932,1.537534661471525
|
||||
90,91,0.9485,0.9240474598930482,1.5127018653551738,1.537239743426522
|
||||
91,92,0.9492083333333333,0.921457219251337,1.5120360770225525,1.53860371316818
|
||||
92,93,0.95,0.9224598930481284,1.5111351316769919,1.5382829611314173
|
||||
93,94,0.9503125,0.9248830213903744,1.510804171562195,1.5363529123724464
|
||||
94,95,0.9513333333333334,0.9275568181818182,1.509633824825287,1.533667146840835
|
||||
95,96,0.9501041666666666,0.9229612299465241,1.5108498128255208,1.5375941335198713
|
||||
96,97,0.9505833333333333,0.9207887700534759,1.5104362696011862,1.5394581116457036
|
||||
97,98,0.95125,0.926052807486631,1.5097919216156006,1.5350576141938805
|
||||
98,99,0.950875,0.9257185828877005,1.5103401794433593,1.5352602616988402
|
||||
99,100,0.9509166666666666,0.9251336898395722,1.5100935606956483,1.5362022280055572
|
||||
|
|
Binary file not shown.
Loading…
Reference in New Issue
Block a user