DM-exp-2/code/apriori.py
fly6516 6e9c2a5f91 feat(code): 添加 Apriori 和 FP-Growth 算法实现
- 新增 Apriori算法挖掘关联规则的实现
- 新增 FP-Growth算法挖掘频繁项集的实现
- 添加相应的数据预处理和结果保存代码
- 优化代码结构,提高可读性和可维护性
2025-03-12 16:31:10 +08:00

59 lines
2.5 KiB
Python
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# -*- coding: utf-8 -*-
from __future__ import print_function
import pandas as pd
# 自定义连接函数用于实现L_{k-1}到C_k的连接
def connect_string(x, ms):
x = list(map(lambda i: sorted(i.split(ms)), x))
l = len(x[0])
r = []
for i in range(len(x)):
for j in range(i, len(x)):
if x[i][:l - 1] == x[j][:l - 1] and x[i][l - 1] != x[j][l - 1]:
r.append(x[i][:l - 1] + sorted([x[j][l - 1], x[i][l - 1]]))
return r
# 寻找关联规则的函数
def find_rule(d, support, confidence, ms=u'--'):
result = pd.DataFrame(index=['support', 'confidence']) # 定义输出结果
support_series = 1.0 * d.sum() / len(d) # 支持度序列
column = list(support_series[support_series > support].index) # 初步根据支持度筛选
k = 0
while len(column) > 1:
k = k + 1
print(u'\n正在进行第%s次搜索...' % k)
column = connect_string(column, ms)
print(u'数目:%s...' % len(column))
sf = lambda i: d[i].prod(axis=1, numeric_only=True) # 新一批支持度的计算函数
# 创建连接数据,这一步耗时、耗内存最严重。当数据集较大时,可以考虑并行运算优化。
d_2 = pd.DataFrame(list(map(sf, column)), index=[ms.join(i) for i in column]).T
support_series_2 = 1.0 * d_2[[ms.join(i) for i in column]].sum() / len(d) # 计算连接后的支持度
column = list(support_series_2[support_series_2 > support].index) # 新一轮支持度筛选
support_series = pd.concat([support_series, support_series_2])
column2 = []
for i in column: # 遍历可能的推理,如{A,B,C}究竟是A+B-->C还是B+C-->A还是C+A-->B
i = i.split(ms)
for j in range(len(i)):
column2.append(i[:j] + i[j + 1:] + i[j:j + 1])
cofidence_series = pd.Series(index=[ms.join(i) for i in column2]) # 定义置信度序列
for i in column2: # 计算置信度序列
cofidence_series[ms.join(i)] = support_series[ms.join(sorted(i))] / support_series[ms.join(i[:len(i) - 1])]
for i in cofidence_series[cofidence_series > confidence].index: # 置信度筛选
result.loc[i, 'confidence'] = cofidence_series[i] # 使用 .loc 更新置信度
result.loc[i, 'support'] = support_series[ms.join(sorted(i.split(ms)))] # 使用 .loc 更新支持度
result = result.T.sort_values(['confidence', 'support'], ascending=False) # 结果整理,输出
print(u'\n结果为:')
print(result)
return result