# -*- coding: utf-8 -*- from __future__ import print_function import pandas as pd # 自定义连接函数,用于实现L_{k-1}到C_k的连接 def connect_string(x, ms): x = list(map(lambda i: sorted(i.split(ms)), x)) l = len(x[0]) r = [] for i in range(len(x)): for j in range(i, len(x)): if x[i][:l - 1] == x[j][:l - 1] and x[i][l - 1] != x[j][l - 1]: r.append(x[i][:l - 1] + sorted([x[j][l - 1], x[i][l - 1]])) return r # 寻找关联规则的函数 def find_rule(d, support, confidence, ms=u'--'): result = pd.DataFrame(index=['support', 'confidence']) # 定义输出结果 support_series = 1.0 * d.sum() / len(d) # 支持度序列 column = list(support_series[support_series > support].index) # 初步根据支持度筛选 k = 0 while len(column) > 1: k = k + 1 print(u'\n正在进行第%s次搜索...' % k) column = connect_string(column, ms) print(u'数目:%s...' % len(column)) sf = lambda i: d[i].prod(axis=1, numeric_only=True) # 新一批支持度的计算函数 # 创建连接数据,这一步耗时、耗内存最严重。当数据集较大时,可以考虑并行运算优化。 d_2 = pd.DataFrame(list(map(sf, column)), index=[ms.join(i) for i in column]).T support_series_2 = 1.0 * d_2[[ms.join(i) for i in column]].sum() / len(d) # 计算连接后的支持度 column = list(support_series_2[support_series_2 > support].index) # 新一轮支持度筛选 support_series = pd.concat([support_series, support_series_2]) column2 = [] for i in column: # 遍历可能的推理,如{A,B,C}究竟是A+B-->C还是B+C-->A还是C+A-->B? i = i.split(ms) for j in range(len(i)): column2.append(i[:j] + i[j + 1:] + i[j:j + 1]) cofidence_series = pd.Series(index=[ms.join(i) for i in column2]) # 定义置信度序列 for i in column2: # 计算置信度序列 cofidence_series[ms.join(i)] = support_series[ms.join(sorted(i))] / support_series[ms.join(i[:len(i) - 1])] for i in cofidence_series[cofidence_series > confidence].index: # 置信度筛选 result.loc[i, 'confidence'] = cofidence_series[i] # 使用 .loc 更新置信度 result.loc[i, 'support'] = support_series[ms.join(sorted(i.split(ms)))] # 使用 .loc 更新支持度 result = result.T.sort_values(['confidence', 'support'], ascending=False) # 结果整理,输出 print(u'\n结果为:') print(result) return result