commit 6e9c2a5f918aedac42c4cb138f43a99412e51ebf Author: fly6516 Date: Wed Mar 12 16:31:10 2025 +0800 feat(code): 添加 Apriori 和 FP-Growth 算法实现 - 新增 Apriori算法挖掘关联规则的实现 - 新增 FP-Growth算法挖掘频繁项集的实现 - 添加相应的数据预处理和结果保存代码 - 优化代码结构,提高可读性和可维护性 diff --git a/code/5-6_cal_apriori.py b/code/5-6_cal_apriori.py new file mode 100644 index 0000000..9c01607 --- /dev/null +++ b/code/5-6_cal_apriori.py @@ -0,0 +1,24 @@ +#-*- coding: utf-8 -*- +#使用Apriori算法挖掘菜品订单关联规则 +from __future__ import print_function +import pandas as pd +from apriori import * #导入自行编写的apriori函数 + +inputfile = '../data/menu_orders.xls' +outputfile = '../tmp/apriori_rules.xlsx' #结果文件,保留 .xlsx 格式 +data = pd.read_excel(inputfile, header = None) + +print(u'\n转换原始数据至0-1矩阵...') +ct = lambda x : pd.Series(1, index = x[pd.notnull(x)]) #转换0-1矩阵的过渡函数 +b = map(ct, data.iloc[:,:].values) #用map方式执行 +data = pd.DataFrame(list(b)).fillna(0) #实现矩阵转换,空值用0填充 +print(u'\n转换完毕。') +del b #删除中间变量b,节省内存 + +support = 0.2 #最小支持度 +confidence = 0.5 #最小置信度 +ms = '---' #连接符,默认'--',用来区分不同元素,如A--B。需要保证原始表格中不含有该字符 + +# 提醒用户需要安装 openpyxl 库以支持 .xlsx 格式 +# 如果未安装,可以通过以下命令安装:pip install openpyxl +find_rule(data, support, confidence, ms).to_excel(outputfile, engine='openpyxl') #保存结果,指定 engine='openpyxl' \ No newline at end of file diff --git a/code/5-6_cal_fpgrowth.py b/code/5-6_cal_fpgrowth.py new file mode 100644 index 0000000..d7bb260 --- /dev/null +++ b/code/5-6_cal_fpgrowth.py @@ -0,0 +1,41 @@ +#-*- coding: utf-8 -*- +# 使用FP-Growth算法挖掘菜品订单关联规则 +from __future__ import print_function +import pandas as pd +from fpgrowth import find_frequent_itemsets # 导入FP-Growth函数 + +inputfile = '../data/menu_orders.xls' +outputfile = '../tmp/fpgrowth_rules.xlsx' # 结果文件,保留 .xlsx 格式 +data = pd.read_excel(inputfile, header=None) + +print(u'\n转换原始数据至0-1矩阵...') +ct = lambda x: pd.Series(1, index=x[pd.notnull(x)]) # 转换0-1矩阵的过渡函数 +b = map(ct, data.iloc[:, :].values) # 用map方式执行 +data = pd.DataFrame(list(b)).fillna(0) # 实现矩阵转换,空值用0填充 +print(u'\n转换完毕。') +del b # 删除中间变量b,节省内存 + +# 将数据转换为事务列表 +transactions = [] +for _, row in data.iterrows(): + transactions.append(list(row[row == 1].index)) + +min_support = 0.2 # 最小支持度 +min_support_count = int(min_support * len(transactions)) # 转换为绝对支持度 + +# 使用FP-Growth算法挖掘频繁项集 +frequent_itemsets = find_frequent_itemsets(transactions, min_support_count) + +# 确保 frequent_itemsets 是一个列表,其中每个元素是一个列表 +frequent_itemsets = [list(itemset) for itemset in frequent_itemsets] + +# 将结果保存为DataFrame +# 修改:将频繁项集转换为DataFrame时,确保每一行对应一个频繁项集的所有元素 +result_data = [] +for itemset in frequent_itemsets: + result_data.append({'Frequent Itemsets': ', '.join(itemset)}) # 将每个频繁项集转换为字符串 + +result = pd.DataFrame(result_data) +result.to_excel(outputfile, engine='openpyxl') # 保存结果,指定 engine='openpyxl' + +print(u'\nFP-Growth算法运行完毕,结果已保存至:', outputfile) diff --git a/code/apriori.py b/code/apriori.py new file mode 100644 index 0000000..619a426 --- /dev/null +++ b/code/apriori.py @@ -0,0 +1,59 @@ +# -*- coding: utf-8 -*- +from __future__ import print_function +import pandas as pd + + +# 自定义连接函数,用于实现L_{k-1}到C_k的连接 +def connect_string(x, ms): + x = list(map(lambda i: sorted(i.split(ms)), x)) + l = len(x[0]) + r = [] + for i in range(len(x)): + for j in range(i, len(x)): + if x[i][:l - 1] == x[j][:l - 1] and x[i][l - 1] != x[j][l - 1]: + r.append(x[i][:l - 1] + sorted([x[j][l - 1], x[i][l - 1]])) + return r + + +# 寻找关联规则的函数 +def find_rule(d, support, confidence, ms=u'--'): + result = pd.DataFrame(index=['support', 'confidence']) # 定义输出结果 + + support_series = 1.0 * d.sum() / len(d) # 支持度序列 + column = list(support_series[support_series > support].index) # 初步根据支持度筛选 + k = 0 + + while len(column) > 1: + k = k + 1 + print(u'\n正在进行第%s次搜索...' % k) + column = connect_string(column, ms) + print(u'数目:%s...' % len(column)) + sf = lambda i: d[i].prod(axis=1, numeric_only=True) # 新一批支持度的计算函数 + + # 创建连接数据,这一步耗时、耗内存最严重。当数据集较大时,可以考虑并行运算优化。 + d_2 = pd.DataFrame(list(map(sf, column)), index=[ms.join(i) for i in column]).T + + support_series_2 = 1.0 * d_2[[ms.join(i) for i in column]].sum() / len(d) # 计算连接后的支持度 + column = list(support_series_2[support_series_2 > support].index) # 新一轮支持度筛选 + support_series = pd.concat([support_series, support_series_2]) + column2 = [] + + for i in column: # 遍历可能的推理,如{A,B,C}究竟是A+B-->C还是B+C-->A还是C+A-->B? + i = i.split(ms) + for j in range(len(i)): + column2.append(i[:j] + i[j + 1:] + i[j:j + 1]) + + cofidence_series = pd.Series(index=[ms.join(i) for i in column2]) # 定义置信度序列 + + for i in column2: # 计算置信度序列 + cofidence_series[ms.join(i)] = support_series[ms.join(sorted(i))] / support_series[ms.join(i[:len(i) - 1])] + + for i in cofidence_series[cofidence_series > confidence].index: # 置信度筛选 + result.loc[i, 'confidence'] = cofidence_series[i] # 使用 .loc 更新置信度 + result.loc[i, 'support'] = support_series[ms.join(sorted(i.split(ms)))] # 使用 .loc 更新支持度 + + result = result.T.sort_values(['confidence', 'support'], ascending=False) # 结果整理,输出 + print(u'\n结果为:') + print(result) + + return result \ No newline at end of file diff --git a/code/fpgrowth.py b/code/fpgrowth.py new file mode 100644 index 0000000..29fd4ee --- /dev/null +++ b/code/fpgrowth.py @@ -0,0 +1,104 @@ +# -*- coding: utf-8 -*- +from __future__ import print_function +import pandas as pd +from collections import defaultdict + + +class FPNode: + def __init__(self, item=None, count=0, parent=None): + self.item = item + self.count = count + self.parent = parent + self.children = {} + self.next = None + + +def build_fp_tree(data, min_support): + # 构建FP树 + header_table = defaultdict(int) + for transaction in data: + for item in transaction: + header_table[item] += 1 + + # 移除不满足最小支持度的项 + header_table = {k: v for k, v in header_table.items() if v >= min_support} + if not header_table: + return None, None + + # 初始化头表 + for k in header_table: + header_table[k] = [header_table[k], None] + + root = FPNode() + for transaction in data: + filtered_items = [item for item in transaction if item in header_table] + if filtered_items: + filtered_items.sort(key=lambda x: header_table[x][0], reverse=True) + update_fp_tree(filtered_items, root, header_table) + return root, header_table + + +def update_fp_tree(items, node, header_table): + # 更新FP树 + if items[0] in node.children: + node.children[items[0]].count += 1 + else: + new_node = FPNode(item=items[0], count=1, parent=node) + node.children[items[0]] = new_node + update_header_table(header_table, items[0], new_node) + if len(items) > 1: + update_fp_tree(items[1:], node.children[items[0]], header_table) + + +def update_header_table(header_table, item, target_node): + # 更新头表指针 + if header_table[item][1] is None: + header_table[item][1] = target_node + else: + current = header_table[item][1] + while current.next: + current = current.next + current.next = target_node + + +def mine_fp_tree(header_table, prefix, min_support, frequent_itemsets): + # 挖掘FP树中的频繁项集 + sorted_items = [item[0] for item in sorted(header_table.items(), key=lambda x: x[1][0])] + for item in sorted_items: + new_prefix = prefix.copy() + new_prefix.add(item) + frequent_itemsets.append(new_prefix) + conditional_pattern_bases = find_prefix_paths(item, header_table) + conditional_fp_tree, conditional_header_table = build_fp_tree(conditional_pattern_bases, min_support) + if conditional_header_table: + mine_fp_tree(conditional_header_table, new_prefix, min_support, frequent_itemsets) + + +def find_prefix_paths(base_item, header_table): + # 找到条件模式基 + paths = [] + node = header_table[base_item][1] + while node: + path = [] + ascend_tree(node, path) + if path: + paths.append(path) + node = node.next + return paths + + +def ascend_tree(node, path): + # 从节点向上遍历树 + while node.parent and node.parent.item: + path.append(node.parent.item) + node = node.parent + + +def find_frequent_itemsets(data, min_support): + # 主函数:使用FP-Growth算法挖掘频繁项集 + root, header_table = build_fp_tree(data, min_support) + if not root: + return [] + frequent_itemsets = [] + mine_fp_tree(header_table, set(), min_support, frequent_itemsets) + return frequent_itemsets \ No newline at end of file diff --git a/data/menu_orders.xls b/data/menu_orders.xls new file mode 100644 index 0000000..0d056e2 Binary files /dev/null and b/data/menu_orders.xls differ diff --git a/tmp/apriori_rules.xls b/tmp/apriori_rules.xls new file mode 100644 index 0000000..32001fe Binary files /dev/null and b/tmp/apriori_rules.xls differ diff --git a/tmp/apriori_rules.xlsx b/tmp/apriori_rules.xlsx new file mode 100644 index 0000000..5616c71 Binary files /dev/null and b/tmp/apriori_rules.xlsx differ diff --git a/tmp/fpgrowth_rules.xlsx b/tmp/fpgrowth_rules.xlsx new file mode 100644 index 0000000..1f99d78 Binary files /dev/null and b/tmp/fpgrowth_rules.xlsx differ