DM-exp-2/code/fpgrowth.py

104 lines
4.6 KiB
Python
Raw Permalink Normal View History

# -*- coding: utf-8 -*-
from __future__ import print_function # 导入Python 2兼容的print函数
import pandas as pd # 导入pandas库用于数据处理
from collections import defaultdict # 导入defaultdict用于构建默认字典
class FPNode:
def __init__(self, item=None, count=0, parent=None):
self.item = item # 节点对应的项
self.count = count # 节点的计数
self.parent = parent # 节点的父节点
self.children = {} # 节点的子节点字典
self.next = None # 指向下一个相同项的节点
def build_fp_tree(data, min_support):
# 构建FP树
header_table = defaultdict(int) # 初始化头表默认值为0
for transaction in data: # 遍历每一条事务
for item in transaction: # 遍历事务中的每一项
header_table[item] += 1 # 统计每一项的支持度
# 移除不满足最小支持度的项
header_table = {k: v for k, v in header_table.items() if v >= min_support}
if not header_table: # 如果头表为空返回None
return None, None
# 初始化头表
for k in header_table: # 为头表中的每一项初始化链表指针
header_table[k] = [header_table[k], None]
root = FPNode() # 创建FP树的根节点
for transaction in data: # 遍历每一条事务
filtered_items = [item for item in transaction if item in header_table] # 过滤掉不满足最小支持度的项
if filtered_items: # 如果过滤后的事务非空
filtered_items.sort(key=lambda x: header_table[x][0], reverse=True) # 按支持度降序排序
update_fp_tree(filtered_items, root, header_table) # 更新FP树
return root, header_table # 返回FP树和头表
def update_fp_tree(items, node, header_table):
# 更新FP树
if items[0] in node.children: # 如果当前项已经在子节点中
node.children[items[0]].count += 1 # 增加子节点的计数
else: # 如果当前项不在子节点中
new_node = FPNode(item=items[0], count=1, parent=node) # 创建新节点
node.children[items[0]] = new_node # 将新节点添加到子节点字典中
update_header_table(header_table, items[0], new_node) # 更新头表指针
if len(items) > 1: # 如果还有剩余项
update_fp_tree(items[1:], node.children[items[0]], header_table) # 递归更新FP树
def update_header_table(header_table, item, target_node):
# 更新头表指针
if header_table[item][1] is None: # 如果链表为空
header_table[item][1] = target_node # 将新节点作为链表头
else: # 如果链表非空
current = header_table[item][1] # 从链表头开始
while current.next: # 遍历链表
current = current.next # 找到链表尾
current.next = target_node # 将新节点添加到链表尾
def mine_fp_tree(header_table, prefix, min_support, frequent_itemsets):
# 挖掘FP树中的频繁项集
sorted_items = [item[0] for item in sorted(header_table.items(), key=lambda x: x[1][0])] # 按支持度升序排序
for item in sorted_items: # 遍历每一项
new_prefix = prefix.copy() # 复制前缀
new_prefix.add(item) # 将当前项加入前缀
frequent_itemsets.append(new_prefix) # 将新前缀加入频繁项集
conditional_pattern_bases = find_prefix_paths(item, header_table) # 找到条件模式基
conditional_fp_tree, conditional_header_table = build_fp_tree(conditional_pattern_bases, min_support) # 构建条件FP树
if conditional_header_table: # 如果条件头表非空
mine_fp_tree(conditional_header_table, new_prefix, min_support, frequent_itemsets) # 递归挖掘条件FP树
def find_prefix_paths(base_item, header_table):
# 找到条件模式基
paths = []
node = header_table[base_item][1]
while node:
path = []
ascend_tree(node, path)
if path:
paths.append(path)
node = node.next
return paths
def ascend_tree(node, path):
# 从节点向上遍历树
while node.parent and node.parent.item:
path.append(node.parent.item)
node = node.parent
def find_frequent_itemsets(data, min_support):
# 主函数使用FP-Growth算法挖掘频繁项集
root, header_table = build_fp_tree(data, min_support) # 构建FP树和头表
if not root: # 如果FP树为空
return [] # 返回空列表
frequent_itemsets = [] # 初始化频繁项集列表
mine_fp_tree(header_table, set(), min_support, frequent_itemsets) # 挖掘频繁项集
return frequent_itemsets # 返回频繁项集