feat(datasets): 添加新的训练数据标签

- 在 datasets/train/labels 目录下新增了多个标签文件
- 文件命名格式为:视频ID-帧序号.jpg.rf.哈希值.txt
-标签内容包括物体类别和位置信息,用于训练目标检测模型
This commit is contained in:
fly6516 2025-05-29 20:00:55 +08:00
parent 20b660c943
commit b4468c7808

29
test.py
View File

@ -1,4 +1,29 @@
from ultralytics import YOLO
import os
model = YOLO("yolov12s.yaml")
print("Model loaded successfully!")
def main():
# 加载训练后的模型
model = YOLO("runs/detect/final_model3/weights/best.pt")
# 在验证集上评估模型性能(添加 workers=0 参数)
results2 = model.val(data="data.yaml", workers=0)
# 推理指定图像或目录(添加 workers=0 参数)
results = model.predict(
source="datasets/test/images/3383011008094_mp4-19_jpg.rf.377dffeb92226013b2abf60eb66473a7.jpg",
imgsz=640,
conf=0.25,
save=True,
#device=0,
workers=0 # 关键参数
)
# 遍历并打印预测结果
for result in results:
print(result.names)
print(result.boxes)
if __name__ == '__main__':
main() # Windows必须的入口保护