BD-exp-9/4-1.py
fly6516 15fcc21975 refactor(4-1):重构数据加载和解析逻辑
- 移除了不必要的导入和未使用的代码
- 新增了 parseData 和 loadData 函数,用于解析和加载数据文件
- 优化了数据解析的正则表达式和逻辑
- 简化了代码结构,提高了可读性和可维护性
2025-04-20 02:32:18 +08:00

72 lines
2.2 KiB
Python

import re
import os
from pyspark import SparkContext
# 初始化 SparkContext
sc = SparkContext(appName="TextAnalysis")
# 定义数据文件路径
GOOGLE_PATH = 'Google.csv'
GOOGLE_SMALL_PATH = 'Google_small.csv'
AMAZON_PATH = 'Amazon.csv'
AMAZON_SMALL_PATH = 'Amazon_small.csv'
STOPWORDS_PATH = 'stopwords.txt'
# 定义正则表达式模式,用于解析数据行
DATAFILE_PATTERN = '^(.+),"(.+)",(.*),(.*),(.*)'
def removeQuotes(s):
""" 去掉输入字符串中的引号 """
return ''.join(i for i in s if i!='"')
def parseDatafileLine(datafileLine):
""" 解析数据文件中的每一行 """
match = re.search(DATAFILE_PATTERN, str(datafileLine))
if match is None:
print('Invalid datafile line: %s' % datafileLine)
return (datafileLine, -1)
elif match.group(1) == '"id"':
print('Header datafile line: %s' % datafileLine)
return (datafileLine, 0)
else:
product = '%s %s %s' % (match.group(2), match.group(3), match.group(4))
return ((removeQuotes(match.group(1)), product), 1)
def parseData(filename):
""" 解析数据文件 """
return (sc
.textFile(filename, 4, 0)
.map(parseDatafileLine)
.cache())
def loadData(path):
""" 加载数据文件 """
filename = path
raw = parseData(filename).cache()
failed = (raw
.filter(lambda s: s[1] == -1)
.map(lambda s: s[0]))
for line in failed.take(1):
print ('{0} - Invalid datafile line: {1}'.format(path, line))
valid = (raw
.filter(lambda s: s[1] == 1)
.map(lambda s: s[0])
.cache())
print ('{0} - Read {1} lines, successfully parsed {2} lines, failed to parse {3} lines'.format(path,raw.count(),valid.count(),failed.count()))
return valid
# 加载数据
googleSmall = loadData(GOOGLE_SMALL_PATH)
google = loadData(GOOGLE_PATH)
amazonSmall = loadData(AMAZON_SMALL_PATH)
amazon = loadData(AMAZON_PATH)
# 打印部分数据以检查
for line in googleSmall.take(3):
print ('google: %s: %s\n' % (line[0], line[1]))
for line in amazonSmall.take(3):
print ('amazon: %s: %s\n' % (line[0], line[1]))
# 假设数据现在已经正确加载,你可以继续后续的分析