feat(3-1.py):重构代码以构建倒排索引
- 重新设计代码结构,添加函数以提高可读性和可维护性 - 增加对 stopwords 的处理,提高索引准确性 - 使用 csv 模块解析 CSV 数据,提高数据处理能力 - 优化文本分词和数据提取逻辑,增强数据处理效率 - 构建倒排索引并保存到 HDFS,实现数据索引功能
This commit is contained in:
parent
8e93a04382
commit
c699e3d21e
83
3-1.py
83
3-1.py
@ -1,39 +1,66 @@
|
||||
# 3-1.py
|
||||
# coding=utf-8
|
||||
from pyspark import SparkContext
|
||||
from collections import defaultdict
|
||||
import csv
|
||||
import re
|
||||
|
||||
sc = SparkContext()
|
||||
# Python 3.5 没有 f-string,使用 format
|
||||
def tokenize(text):
|
||||
# 分词并保留英文、数字
|
||||
return re.findall(r'\w+', text.lower())
|
||||
|
||||
corpus = google_tokens.union(amazon_tokens)
|
||||
N = corpus.count()
|
||||
def load_stopwords(sc):
|
||||
try:
|
||||
return set(sc.textFile("hdfs:///user/root/stopwords.txt").collect())
|
||||
except:
|
||||
# fallback to local
|
||||
with open("stopwords.txt", "r") as f:
|
||||
return set([line.strip() for line in f])
|
||||
|
||||
def compute_tf(record):
|
||||
doc_id, tokens = record
|
||||
tf = defaultdict(float)
|
||||
for token in tokens:
|
||||
tf[token] += 1.0
|
||||
total = float(len(tokens))
|
||||
for key in tf:
|
||||
tf[key] = tf[key] / total
|
||||
return (doc_id, tf)
|
||||
def parse_csv_line(line):
|
||||
# 使用 csv.reader 兼容逗号分隔含引号的数据
|
||||
reader = csv.reader([line])
|
||||
return next(reader)
|
||||
|
||||
tf_rdd = corpus.map(compute_tf)
|
||||
def extract_info(line, source):
|
||||
try:
|
||||
fields = parse_csv_line(line)
|
||||
if source == "google":
|
||||
# Google: id, name, description, manufacturer...
|
||||
pid = fields[0].strip()
|
||||
text = "{} {} {}".format(fields[1], fields[2], fields[3])
|
||||
else:
|
||||
# Amazon: id, title, description, manufacturer...
|
||||
pid = fields[0].strip()
|
||||
text = "{} {} {}".format(fields[1], fields[2], fields[3])
|
||||
return (pid, text)
|
||||
except:
|
||||
return (None, None)
|
||||
|
||||
token_docs = corpus.flatMap(lambda x: [(token, x[0]) for token in set(x[1])])
|
||||
doc_freq = token_docs.groupByKey().mapValues(lambda x: len(set(x)))
|
||||
idf_dict = doc_freq.map(lambda x: (x[0], float(N) / x[1])).collectAsMap()
|
||||
idf_bcast = sc.broadcast(idf_dict)
|
||||
if __name__ == "__main__":
|
||||
sc = SparkContext(appName="InvertedIndex")
|
||||
|
||||
stopwords = load_stopwords(sc)
|
||||
|
||||
def compute_tfidf(record):
|
||||
doc_id, tf_map = record
|
||||
idf_map = idf_bcast.value
|
||||
tfidf = {}
|
||||
for token in tf_map:
|
||||
tfidf[token] = tf_map[token] * idf_map.get(token, 0.0)
|
||||
return (doc_id, tfidf)
|
||||
# 加载数据
|
||||
google = sc.textFile("hdfs://master:9000/user/root/GoogleProducts.csv")
|
||||
amazon = sc.textFile("hdfs://master:9000/user/root/AmazonProducts.csv")
|
||||
|
||||
tfidf_rdd = tf_rdd.map(compute_tfidf)
|
||||
# 提取内容
|
||||
google_rdd = google.map(lambda line: extract_info(line, "google")) \
|
||||
.filter(lambda x: x[0] is not None)
|
||||
|
||||
amazon_rdd = amazon.map(lambda line: extract_info(line, "amazon")) \
|
||||
.filter(lambda x: x[0] is not None)
|
||||
|
||||
print("TF-IDF sample: ", tfidf_rdd.take(1))
|
||||
# 合并两数据集
|
||||
all_data = google_rdd.union(amazon_rdd)
|
||||
|
||||
# 构建倒排索引
|
||||
inverted_index = all_data.flatMap(lambda x: [((word, x[0])) for word in tokenize(x[1]) if word not in stopwords]) \
|
||||
.groupByKey() \
|
||||
.mapValues(lambda ids: list(set(ids)))
|
||||
|
||||
# 输出(可保存到 HDFS)
|
||||
inverted_index.saveAsTextFile("hdfs:///user/root/output/inverted_index")
|
||||
|
||||
sc.stop()
|
||||
|
Loading…
Reference in New Issue
Block a user