feat(5-1.py): 实现可扩展实体匹配算法
- 创建 SparkContext 和 SQLContext - 读取和解析 Amazon 和 Google 数据集 - 实现数据分词、TF-IDF 计算、余弦相似度计算等功能- 创建和使用广播变量提高计算效率 - 优化实体匹配算法以处理大规模数据集
This commit is contained in:
parent
33687f9fcd
commit
9921a965ae
132
5-1.py
Normal file
132
5-1.py
Normal file
@ -0,0 +1,132 @@
|
||||
import re
|
||||
import math
|
||||
from pyspark import SparkContext
|
||||
from pyspark.sql import SQLContext
|
||||
from pyspark import Broadcast
|
||||
|
||||
# 创建 SparkContext 和 SQLContext
|
||||
sc = SparkContext(appName="ScalableER")
|
||||
sqlContext = SQLContext(sc)
|
||||
|
||||
# 数据文件路径
|
||||
amazon_path = "hdfs://master:9000/user/root/Amazon_small.csv"
|
||||
google_path = "hdfs://master:9000/user/root/Google_small.csv"
|
||||
|
||||
def tokenize(text):
|
||||
""" 分词化:将文本转成小写并提取字母数字组合的词 """
|
||||
return re.findall(r'\w+', text.lower())
|
||||
|
||||
def parse_data_file(line):
|
||||
""" 解析数据文件的每一行 """
|
||||
line = line.strip()
|
||||
if not line:
|
||||
return None
|
||||
parts = line.split(',')
|
||||
if len(parts) < 5:
|
||||
return None
|
||||
doc_id = parts[0].strip()
|
||||
text = "{} {} {}".format(parts[1].strip(), parts[2].strip(), parts[3].strip())
|
||||
return (doc_id, text)
|
||||
|
||||
# 读取和解析数据
|
||||
def load_data(path):
|
||||
""" 读取并解析数据文件 """
|
||||
raw_data = sc.textFile(path).map(parse_data_file).filter(lambda x: x is not None)
|
||||
return raw_data
|
||||
|
||||
amazon = load_data(amazon_path)
|
||||
google = load_data(google_path)
|
||||
|
||||
# 对数据进行分词化
|
||||
amazon_rec_to_token = amazon.map(lambda x: (x[0], tokenize(x[1])))
|
||||
google_rec_to_token = google.map(lambda x: (x[0], tokenize(x[1])))
|
||||
|
||||
# 合并 Amazon 和 Google 数据集
|
||||
full_corpus_rdd = amazon_rec_to_token.union(google_rec_to_token)
|
||||
|
||||
# 计算 IDF
|
||||
def idfs(corpus):
|
||||
""" 计算逆文档频率 IDF """
|
||||
N = corpus.count() # 文档总数
|
||||
term_doc_pairs = corpus.flatMap(lambda x: [(term, x[0]) for term in set(x[1])])
|
||||
df_rdd = term_doc_pairs.distinct().map(lambda x: (x[0], 1)).reduceByKey(lambda a, b: a + b)
|
||||
idf_rdd = df_rdd.map(lambda x: (x[0], float(N) / float(x[1])))
|
||||
return idf_rdd
|
||||
|
||||
# 计算完整数据集的 IDF
|
||||
idfs_full = idfs(full_corpus_rdd)
|
||||
|
||||
# 创建广播变量
|
||||
idfs_full_weights = idfs_full.collectAsMap()
|
||||
idfs_full_broadcast = sc.broadcast(idfs_full_weights)
|
||||
|
||||
# 计算 TF-IDF
|
||||
def tf(tokens):
|
||||
""" 计算词频 TF """
|
||||
total = len(tokens)
|
||||
counts = {}
|
||||
for token in tokens:
|
||||
counts[token] = counts.get(token, 0) + 1
|
||||
return {k: float(v) / total for k, v in counts.items()}
|
||||
|
||||
def tfidf(tokens, idfs):
|
||||
""" 计算 TF-IDF """
|
||||
tfs = tf(tokens)
|
||||
return {k: v * idfs.get(k, 0) for k, v in tfs.items()}
|
||||
|
||||
# 计算 Amazon 和 Google 的 TF-IDF
|
||||
amazon_weights_rdd = amazon_rec_to_token.map(lambda x: (x[0], tfidf(x[1], idfs_full_broadcast.value)))
|
||||
google_weights_rdd = google_rec_to_token.map(lambda x: (x[0], tfidf(x[1], idfs_full_broadcast.value)))
|
||||
|
||||
# 计算权重范数
|
||||
def norm(weights):
|
||||
""" 计算向量的范数 """
|
||||
return math.sqrt(sum([w * w for w in weights.values()]))
|
||||
|
||||
# 计算 Amazon 和 Google 的权重范数
|
||||
amazon_norms = amazon_weights_rdd.map(lambda x: (x[0], norm(x[1])))
|
||||
google_norms = google_weights_rdd.map(lambda x: (x[0], norm(x[1])))
|
||||
|
||||
# 创建广播变量
|
||||
amazon_norms_broadcast = sc.broadcast(amazon_norms.collectAsMap())
|
||||
google_norms_broadcast = sc.broadcast(google_norms.collectAsMap())
|
||||
|
||||
# 创建反向索引
|
||||
def invert(record):
|
||||
""" 反转 (ID, tokens) 到 (token, ID) """
|
||||
id = record[0]
|
||||
weights = record[1]
|
||||
return [(token, id) for token in weights]
|
||||
|
||||
# 创建反向索引
|
||||
amazon_inv_pairs_rdd = amazon_weights_rdd.flatMap(lambda x: invert(x)).cache()
|
||||
google_inv_pairs_rdd = google_weights_rdd.flatMap(lambda x: invert(x)).cache()
|
||||
|
||||
# 计算共有的 token
|
||||
common_tokens = amazon_inv_pairs_rdd.join(google_inv_pairs_rdd).map(lambda x: (x[0], x[1])).groupByKey().map(lambda x: (x[0], list(x[1]))).cache()
|
||||
|
||||
# 计算余弦相似度
|
||||
def fast_cosine_similarity(record):
|
||||
""" 计算余弦相似度 """
|
||||
amazon_id = record[0][0]
|
||||
google_url = record[0][1]
|
||||
tokens = record[1]
|
||||
s = sum([amazon_weights_broadcast.value[amazon_id].get(token, 0) * google_weights_broadcast.value[google_url].get(token, 0) for token in tokens])
|
||||
value = s / (amazon_norms_broadcast.value[amazon_id] * google_norms_broadcast.value[google_url])
|
||||
return ((amazon_id, google_url), value)
|
||||
|
||||
# 计算相似度
|
||||
similarities_full_rdd = common_tokens.map(fast_cosine_similarity).cache()
|
||||
|
||||
# 查看结果
|
||||
print(f"Number of similarity records: {similarities_full_rdd.count()}")
|
||||
|
||||
# 计算并测试相似度
|
||||
similarity_test = similarities_full_rdd.filter(lambda x: x[0][0] == 'b00005lzly' and x[0][1] == 'http://www.google.com/base/feeds/snippets/13823221823254120257').collect()
|
||||
print(len(similarity_test))
|
||||
|
||||
# 测试
|
||||
assert len(similarity_test) == 1, f"incorrect len(similarity_test)"
|
||||
assert similarities_full_rdd.count() == 2441088, f"incorrect similarities_full_rdd.count()"
|
||||
|
||||
sc.stop()
|
Loading…
Reference in New Issue
Block a user