feat(6-1): 实现 TF-IDF 和余弦相似度计算
- 添加分词和数据解析功能 - 实现逆文档频率 (IDF) 计算 - 计算 TF-IDF 权重 - 添加向量范数计算 - 实现倒排索引和快速余弦相似度计算 - 处理完整数据集并计算相似度
This commit is contained in:
parent
6f703860a6
commit
5770bc266e
135
6-1.py
135
6-1.py
@ -1,12 +1,141 @@
|
|||||||
from pyspark import SparkContext
|
from pyspark import SparkContext
|
||||||
from pyspark.accumulators import AccumulatorParam
|
from pyspark.accumulators import AccumulatorParam
|
||||||
import matplotlib.pyplot as plt
|
import matplotlib.pyplot as plt
|
||||||
|
import re
|
||||||
|
import math
|
||||||
|
from pyspark.sql import SQLContext
|
||||||
|
from pyspark import Broadcast
|
||||||
|
|
||||||
# 创建 SparkContext
|
# 创建 SparkContext 和 SQLContext
|
||||||
sc = SparkContext(appName="TextAnalysis")
|
sc = SparkContext(appName="TextAnalysis")
|
||||||
|
sqlContext = SQLContext(sc)
|
||||||
|
|
||||||
# 假设 similaritiesFullRDD 和 goldStandard 已经存在
|
# 数据文件路径
|
||||||
# similaritiesFullRDD: RDD of ((Amazon ID, Google URL), Similarity)
|
amazon_path = "hdfs://master:9000/user/root/Amazon_small.csv"
|
||||||
|
google_path = "hdfs://master:9000/user/root/Google_small.csv"
|
||||||
|
|
||||||
|
def tokenize(text):
|
||||||
|
""" 分词化:将文本转成小写并提取字母数字组合的词 """
|
||||||
|
return re.findall(r'\w+', text.lower())
|
||||||
|
|
||||||
|
def parse_data_file(line):
|
||||||
|
""" 解析数据文件的每一行 """
|
||||||
|
line = line.strip()
|
||||||
|
if not line:
|
||||||
|
return None
|
||||||
|
parts = line.split(',')
|
||||||
|
if len(parts) < 5:
|
||||||
|
return None
|
||||||
|
doc_id = parts[0].strip()
|
||||||
|
text = "{} {} {}".format(parts[1].strip(), parts[2].strip(), parts[3].strip())
|
||||||
|
return (doc_id, text)
|
||||||
|
|
||||||
|
def load_data(path):
|
||||||
|
""" 读取并解析数据文件 """
|
||||||
|
raw_data = sc.textFile(path).map(parse_data_file).filter(lambda x: x is not None)
|
||||||
|
return raw_data
|
||||||
|
|
||||||
|
amazon = load_data(amazon_path)
|
||||||
|
google = load_data(google_path)
|
||||||
|
|
||||||
|
amazon_rec_to_token = amazon.map(lambda x: (x[0], tokenize(x[1])))
|
||||||
|
google_rec_to_token = google.map(lambda x: (x[0], tokenize(x[1])))
|
||||||
|
|
||||||
|
full_corpus_rdd = amazon_rec_to_token.union(google_rec_to_token)
|
||||||
|
|
||||||
|
def idfs(corpus):
|
||||||
|
""" 计算逆文档频率 IDF """
|
||||||
|
N = corpus.count() # 文档总数
|
||||||
|
term_doc_pairs = corpus.flatMap(lambda x: [(term, x[0]) for term in set(x[1])])
|
||||||
|
df_rdd = term_doc_pairs.distinct().map(lambda x: (x[0], 1)).reduceByKey(lambda a, b: a + b)
|
||||||
|
idf_rdd = df_rdd.map(lambda x: (x[0], float(N) / float(x[1])))
|
||||||
|
return idf_rdd
|
||||||
|
|
||||||
|
amazonFullRecToToken = amazon.map(lambda line: (line[0], tokenize(line[1])))
|
||||||
|
googleFullRecToToken = google.map(lambda line: (line[0], tokenize(line[1])))
|
||||||
|
print('Amazon full dataset is {} products, Google full dataset is {} products'.format(
|
||||||
|
amazonFullRecToToken.count(),
|
||||||
|
googleFullRecToToken.count()))
|
||||||
|
|
||||||
|
fullCorpusRDD = amazonFullRecToToken.union(googleFullRecToToken)
|
||||||
|
idfsFull = idfs(fullCorpusRDD)
|
||||||
|
idfsFullCount = idfsFull.count()
|
||||||
|
print('There are %s unique tokens in the full datasets.' % idfsFullCount)
|
||||||
|
|
||||||
|
idfsFullWeights = idfsFull.collectAsMap()
|
||||||
|
idfsFullBroadcast = sc.broadcast(idfsFullWeights)
|
||||||
|
|
||||||
|
def tfidf(tokens, idfs):
|
||||||
|
""" 计算 TF-IDF 权重 """
|
||||||
|
tf = {}
|
||||||
|
for token in tokens:
|
||||||
|
tf[token] = tf.get(token, 0) + 1
|
||||||
|
tfidf_weights = {}
|
||||||
|
for token, freq in tf.items():
|
||||||
|
if token in idfs:
|
||||||
|
tfidf_weights[token] = freq * idfs[token]
|
||||||
|
return tfidf_weights
|
||||||
|
|
||||||
|
amazonWeightsRDD = amazonFullRecToToken.map(lambda x: (x[0], tfidf(x[1], idfsFullBroadcast.value)))
|
||||||
|
googleWeightsRDD = googleFullRecToToken.map(lambda x: (x[0], tfidf(x[1], idfsFullBroadcast.value)))
|
||||||
|
print('There are {} Amazon weights and {} Google weights.'.format(amazonWeightsRDD.count(),
|
||||||
|
googleWeightsRDD.count()))
|
||||||
|
|
||||||
|
def norm(weights):
|
||||||
|
""" 计算向量的范数 """
|
||||||
|
return math.sqrt(sum([w * w for w in weights.values()]))
|
||||||
|
|
||||||
|
amazonNorms = amazonWeightsRDD.map(lambda x: (x[0], norm(x[1])))
|
||||||
|
amazonNormsBroadcast = sc.broadcast(amazonNorms.collectAsMap())
|
||||||
|
googleNorms = googleWeightsRDD.map(lambda x: (x[0], norm(x[1])))
|
||||||
|
googleNormsBroadcast = sc.broadcast(googleNorms.collectAsMap())
|
||||||
|
|
||||||
|
def invert(record):
|
||||||
|
""" Invert (ID, tokens) to a list of (token, ID) """
|
||||||
|
id = record[0]
|
||||||
|
weights = record[1]
|
||||||
|
pairs = [(token, id) for token in weights.keys()]
|
||||||
|
return pairs
|
||||||
|
|
||||||
|
amazonInvPairsRDD = amazonWeightsRDD.flatMap(lambda x: invert(x)).cache()
|
||||||
|
googleInvPairsRDD = googleWeightsRDD.flatMap(lambda x: invert(x)).cache()
|
||||||
|
print('There are {} Amazon inverted pairs and {} Google inverted pairs.'.format(amazonInvPairsRDD.count(),
|
||||||
|
googleInvPairsRDD.count()))
|
||||||
|
|
||||||
|
def swap(record):
|
||||||
|
""" Swap (token, (ID, URL)) to ((ID, URL), token) """
|
||||||
|
token = record[0]
|
||||||
|
keys = record[1]
|
||||||
|
return (keys, token)
|
||||||
|
|
||||||
|
commonTokens = (amazonInvPairsRDD
|
||||||
|
.join(googleInvPairsRDD)
|
||||||
|
.map(lambda x: swap(x))
|
||||||
|
.groupByKey()
|
||||||
|
.map(lambda x: (x[0], list(x[1])))
|
||||||
|
.cache())
|
||||||
|
|
||||||
|
print('Found %d common tokens' % commonTokens.count())
|
||||||
|
|
||||||
|
amazonWeightsBroadcast = sc.broadcast(amazonWeightsRDD.collectAsMap())
|
||||||
|
googleWeightsBroadcast = sc.broadcast(googleWeightsRDD.collectAsMap())
|
||||||
|
|
||||||
|
def fastCosineSimilarity(record):
|
||||||
|
""" Compute Cosine Similarity using Broadcast variables """
|
||||||
|
amazonRec = record[0][0]
|
||||||
|
googleRec = record[0][1]
|
||||||
|
tokens = record[1]
|
||||||
|
s = sum([(amazonWeightsBroadcast.value[amazonRec].get(token, 0) * googleWeightsBroadcast.value[googleRec].get(token, 0))
|
||||||
|
for token in tokens])
|
||||||
|
value = s / (amazonNormsBroadcast.value[amazonRec] * googleNormsBroadcast.value[googleRec])
|
||||||
|
key = (amazonRec, googleRec)
|
||||||
|
return (key, value)
|
||||||
|
|
||||||
|
similaritiesFullRDD = commonTokens.map(lambda x: fastCosineSimilarity(x)).cache()
|
||||||
|
|
||||||
|
print(similaritiesFullRDD.count())
|
||||||
|
|
||||||
|
# 假设 goldStandard 已经存在
|
||||||
# goldStandard: RDD of ((Amazon ID, Google URL), 1) for true duplicates
|
# goldStandard: RDD of ((Amazon ID, Google URL), 1) for true duplicates
|
||||||
|
|
||||||
# 创建 simsFullRDD 和 simsFullValuesRDD
|
# 创建 simsFullRDD 和 simsFullValuesRDD
|
||||||
|
Loading…
Reference in New Issue
Block a user