BD-exp-3/origin.md

251 lines
5.9 KiB
Markdown
Raw Normal View History

好的,我们可以使用 **HDFS** 存储数据,并利用 **Hive** 进行 SQL 查询分析。以下是实验步骤和指令:
---
## **1. 数据准备**
### **1.1 上传数据到 HDFS**
1. **解压数据包**
```bash
unzip data.zip
```
2. **创建 HDFS 目录并上传数据**
```bash
hdfs dfs -mkdir -p /user/hadoop/movie_data
hdfs dfs -put users.dat /user/hadoop/movie_data/
hdfs dfs -put movies.dat /user/hadoop/movie_data/
hdfs dfs -put ratings.dat /user/hadoop/movie_data/
```
---
## **2. 创建 Hive 数据库和表**
### **2.1 进入 Hive**
```bash
hive
```
### **2.2 创建数据库**
```sql
CREATE DATABASE IF NOT EXISTS movie_analysis;
USE movie_analysis;
```
### **2.3 创建表**
```sql
-- 用户表
CREATE EXTERNAL TABLE users (
UserID BIGINT,
Gender STRING,
Age INT,
Occupation STRING,
Zipcode STRING
)
ROW FORMAT DELIMITED
FIELDS TERMINATED BY '::'
STORED AS TEXTFILE
LOCATION '/user/hadoop/movie_data/';
-- 电影表
CREATE EXTERNAL TABLE movies (
MovieID BIGINT,
Title STRING,
Genres STRING
)
ROW FORMAT DELIMITED
FIELDS TERMINATED BY '::'
STORED AS TEXTFILE
LOCATION '/user/hadoop/movie_data/';
-- 评分表
CREATE EXTERNAL TABLE ratings (
UserID BIGINT,
MovieID BIGINT,
Rating DOUBLE,
Timestamp STRING
)
ROW FORMAT DELIMITED
FIELDS TERMINATED BY '::'
STORED AS TEXTFILE
LOCATION '/user/hadoop/movie_data/';
```
### **2.4 验证数据是否正确导入**
```sql
SELECT * FROM users LIMIT 5;
SELECT * FROM movies LIMIT 5;
SELECT * FROM ratings LIMIT 5;
```
---
## **3. 数据分析任务**
### **3.1 评分次数最多的10部电影**
```sql
SELECT m.Title, COUNT(r.MovieID) AS RatingCount
FROM ratings r
JOIN movies m ON r.MovieID = m.MovieID
GROUP BY m.Title
ORDER BY RatingCount DESC
LIMIT 10;
```
### **3.2 男性、女性评分最高的10部电影**
```sql
-- 男性
SELECT u.Gender, m.Title, AVG(r.Rating) AS AvgRating
FROM ratings r
JOIN users u ON r.UserID = u.UserID
JOIN movies m ON r.MovieID = m.MovieID
WHERE u.Gender = 'M'
GROUP BY u.Gender, m.Title
ORDER BY AvgRating DESC
LIMIT 10;
-- 女性
SELECT u.Gender, m.Title, AVG(r.Rating) AS AvgRating
FROM ratings r
JOIN users u ON r.UserID = u.UserID
JOIN movies m ON r.MovieID = m.MovieID
WHERE u.Gender = 'F'
GROUP BY u.Gender, m.Title
ORDER BY AvgRating DESC
LIMIT 10;
```
### **3.3 电影 ID 为 2116 的各年龄段平均影评分**
```sql
SELECT u.Age, AVG(r.Rating) AS AvgRating
FROM ratings r
JOIN users u ON r.UserID = u.UserID
WHERE r.MovieID = 2116
GROUP BY u.Age
ORDER BY u.Age;
```
### **3.4 观看次数最多的女性评最高分的10部电影**
```sql
WITH MostActiveFemale AS (
SELECT UserID
FROM (
SELECT UserID, COUNT(MovieID) AS rating_count
FROM ratings
WHERE UserID IN (SELECT UserID FROM users WHERE Gender = 'F')
GROUP BY UserID
ORDER BY rating_count DESC
LIMIT 1
) t
)
SELECT r.UserID, m.Title, AVG(r.Rating) AS AvgRating
FROM ratings r
JOIN movies m ON r.MovieID = m.MovieID
JOIN MostActiveFemale u ON r.UserID = u.UserID
GROUP BY r.UserID, m.Title
ORDER BY AvgRating DESC
LIMIT 10;
```
### **3.5 好片评分≥4.0最多的年份的前10部电影**
```sql
WITH YearlyGoodMovies AS (
SELECT
YEAR(FROM_UNIXTIME(CAST(r.Timestamped AS BIGINT))) AS Year,
COUNT(DISTINCT r.MovieID) AS GoodMovieCount
FROM ratings r
WHERE r.Rating >= 4.0
GROUP BY YEAR(FROM_UNIXTIME(CAST(r.Timestamped AS BIGINT)))
ORDER BY GoodMovieCount DESC
LIMIT 1
),
TopMovies AS (
SELECT
YEAR(FROM_UNIXTIME(CAST(r.Timestamped AS BIGINT))) AS Year,
m.Title,
COUNT(r.MovieID) AS RatingCount,
AVG(r.Rating) AS AvgRating
FROM ratings r
JOIN movies m ON r.MovieID = m.MovieID
WHERE r.Rating >= 4.0
GROUP BY YEAR(FROM_UNIXTIME(CAST(r.Timestamped AS BIGINT))), m.Title
)
SELECT t.Year, t.Title, t.RatingCount, t.AvgRating
FROM TopMovies t
JOIN YearlyGoodMovies y ON t.Year = y.Year
ORDER BY t.RatingCount DESC, t.AvgRating DESC
LIMIT 10;
```
### **3.6 1997年上映的评分最高的10部Comedy电影**
```sql
SELECT m.Title, AVG(r.Rating) AS AvgRating
FROM ratings r
JOIN movies m ON r.MovieID = m.MovieID
WHERE m.Title LIKE '%(1997)%' AND m.Genres LIKE '%Comedy%'
GROUP BY m.Title
ORDER BY AvgRating DESC
LIMIT 10;
```
### **3.7 各类型电影中评价最高的5部电影**
```sql
SELECT m.Genres, m.Title, AVG(r.Rating) AS AvgRating
FROM ratings r
JOIN movies m ON r.MovieID = m.MovieID
GROUP BY m.Genres, m.Title
ORDER BY m.Genres, AvgRating DESC
LIMIT 5;
```
### **3.8 各年评分最高的电影类型**
```sql
SELECT YEAR(FROM_UNIXTIME(CAST(r.Timestamp AS BIGINT))) AS Year, m.Genres, AVG(r.Rating) AS AvgRating
FROM ratings r
JOIN movies m ON r.MovieID = m.MovieID
GROUP BY Year, m.Genres
ORDER BY Year, AvgRating DESC;
```
### **3.9 每个地区最高评分的电影名**
```sql
INSERT OVERWRITE DIRECTORY '/user/hadoop/movie_results'
ROW FORMAT DELIMITED
FIELDS TERMINATED BY ','
SELECT u.Zipcode, m.Title, AVG(r.Rating) AS AvgRating
FROM ratings r
JOIN users u ON r.UserID = u.UserID
JOIN movies m ON r.MovieID = m.MovieID
GROUP BY u.Zipcode, m.Title
ORDER BY u.Zipcode, AvgRating DESC;
```
---
## **4. 结果存入 HDFS**
执行后,查询结果会存储在 `/user/hadoop/movie_results/` 目录下,可用以下命令查看:
```bash
hdfs dfs -ls /user/hadoop/movie_results/
hdfs dfs -cat /user/hadoop/movie_results/part-00000
```
---
### **总结**
1. **数据准备**
- 解压并上传数据到 HDFS
- 创建 Hive 数据库和表
- 验证数据是否正确导入
2. **数据分析**
- 计算评分最多的电影
- 计算男女评分最高的电影
- 计算不同年龄段对某部电影的评分
- 找出最活跃女性的最爱电影
- 计算评分最高的电影年份及类别
- 存储地区最高评分电影至 HDFS
---
这就是完整的实验报告步骤和指令,你可以直接复制执行。如果有任何问题,欢迎交流!🚀