AI-exp-2/code/test_unet.py

80 lines
2.5 KiB
Python
Raw Normal View History

import os
import torch
from torch.utils.data import DataLoader
from torchvision import transforms
from PIL import Image
import cv2
import numpy as np
# 导入训练好的分割数据集类和模型定义
from unet_coco_segmentation import CocoSegDataset
import segmentation_models_pytorch as smp # 如使用smp模型
# 配置
TEST_DIR = '../data/test' # 测试集图像目录
TEST_ANN = '../data/test/_annotations.coco.json' # 测试集COCO注释文件
MODEL_PATH = 'unet_coco_segmentation.pth' # 预训练模型权重
OUTPUT_DIR = 'output/unet_results'
# 建立输出目录
os.makedirs(OUTPUT_DIR, exist_ok=True)
# 设备配置
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# 数据预处理(与训练时保持一致)
transform = transforms.Compose([
transforms.Resize((256, 256)),
transforms.ToTensor(),
transforms.Normalize(mean=(0.485,0.456,0.406), std=(0.229,0.224,0.225)),
])
# 仅需同样的变换不需要mask变换
# 加载测试集
from unet_coco_segmentation import CocoSegDataset
test_dataset = CocoSegDataset(
root_dir=TEST_DIR,
annotation_file=TEST_ANN,
transforms=None, # 在Dataset里单独处理
mask_transforms=None
)
test_loader = DataLoader(test_dataset, batch_size=1, shuffle=False)
# 初始化模型(同训练时)
model = smp.Unet(
encoder_name='resnet34',
encoder_weights=None,
in_channels=3,
classes=1
)
model.load_state_dict(torch.load(MODEL_PATH, map_location=device)) # 加载权重
model.to(device)
model.eval()
print("成功加载模型权重并切换到评估模式")
# 遍历测试集
for img, mask_true in test_loader:
# img 保存为Tensor batch=1
img = img.to(device)
img_id = test_dataset.image_ids[test_loader.dataset.image_ids.index(test_dataset.image_ids[0])] # 这里获取ID
# 预测
with torch.no_grad():
output = model(img)
output_prob = torch.sigmoid(output).squeeze().cpu().numpy()
# 恢复到原始尺寸
# 获取原图尺寸
# 重新加载原始图像获取尺寸
img_info = next(item for item in test_dataset.coco['images'] if item['id']==test_dataset.image_ids[0])
orig_w, orig_h = img_info['width'], img_info['height']
output_prob = cv2.resize(output_prob, (orig_w, orig_h), interpolation=cv2.INTER_LINEAR)
# 二值化
threshold = 0.5
output_mask = (output_prob > threshold).astype(np.uint8) * 255
# 保存结果
output_path = os.path.join(OUTPUT_DIR, f"{img_id}_mask.png")
cv2.imwrite(output_path, output_mask)
print(f"Saved mask for image {img_id} to {output_path}")