AI-exp-2/code/unet_segmentation.py

199 lines
10 KiB
Python
Raw Normal View History

# 导入必要的库
import os # 文件和路径管理
import time # 计时功能
import logging # 日志记录
import json # 处理JSON数据
import numpy as np # 数值运算
from PIL import Image # 图像处理
import torch # PyTorch深度学习框架
import torch.nn as nn # 神经网络模块
import torch.optim as optim # 优化器
from torch.utils.data import Dataset, DataLoader # 数据集和加载器
import torchvision.utils as vutils # 可视化工具
# COCO数据集相关库
from pycocotools import mask as maskUtils # COCO掩码处理工具
import albumentations as A # 数据增强库
from albumentations.pytorch import ToTensorV2 # Albumentations到Tensor的转换
torch.backends.cudnn.benchmark = True
# 固定随机种子,确保实验可复现
torch.manual_seed(42)
# 配置日志格式
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
# ------------------ 定义 U-Net 模型(自定义) ------------------
class UNet(nn.Module):
def __init__(self, in_channels=3, base_channels=64, out_channels=1):
super(UNet, self).__init__()
# 双卷积块定义
def double_conv(in_c, out_c):
return nn.Sequential(
nn.Conv2d(in_c, out_c, kernel_size=3, padding=1),
nn.BatchNorm2d(out_c),
nn.ReLU(inplace=True),
nn.Conv2d(out_c, out_c, kernel_size=3, padding=1),
nn.BatchNorm2d(out_c),
nn.ReLU(inplace=True)
)
# 下采样路径
self.enc1 = double_conv(in_channels, base_channels)
self.enc2 = double_conv(base_channels, base_channels*2)
self.enc3 = double_conv(base_channels*2, base_channels*4)
self.enc4 = double_conv(base_channels*4, base_channels*8)
self.pool = nn.MaxPool2d(2) # 最大池化层
# 中心层
self.center = double_conv(base_channels*8, base_channels*16)
# 上采样路径
self.up4 = nn.ConvTranspose2d(base_channels*16, base_channels*8, kernel_size=2, stride=2)
self.dec4 = double_conv(base_channels*16, base_channels*8)
self.up3 = nn.ConvTranspose2d(base_channels*8, base_channels*4, kernel_size=2, stride=2)
self.dec3 = double_conv(base_channels*8, base_channels*4)
self.up2 = nn.ConvTranspose2d(base_channels*4, base_channels*2, kernel_size=2, stride=2)
self.dec2 = double_conv(base_channels*4, base_channels*2)
self.up1 = nn.ConvTranspose2d(base_channels*2, base_channels, kernel_size=2, stride=2)
self.dec1 = double_conv(base_channels*2, base_channels)
# 最终1x1卷积层
self.final = nn.Conv2d(base_channels, out_channels, kernel_size=1)
def forward(self, x):
# 编码路径
e1 = self.enc1(x)
e2 = self.enc2(self.pool(e1))
e3 = self.enc3(self.pool(e2))
e4 = self.enc4(self.pool(e3))
# 中心层
c = self.center(self.pool(e4))
# 解码路径
d4 = self.up4(c)
d4 = torch.cat([d4, e4], dim=1) # 特征拼接
d4 = self.dec4(d4)
d3 = self.up3(d4)
d3 = torch.cat([d3, e3], dim=1)
d3 = self.dec3(d3)
d2 = self.up2(d3)
d2 = torch.cat([d2, e2], dim=1)
d2 = self.dec2(d2)
d1 = self.up1(d2)
d1 = torch.cat([d1, e1], dim=1)
d1 = self.dec1(d1)
return self.final(d1) # 最终输出
# ------------------ Dice Loss 与 IoU 指标 ------------------
class DiceLoss(nn.Module):
def __init__(self, eps=1e-6):
super(DiceLoss, self).__init__()
self.eps = eps # 平滑项
def forward(self, logits, targets):
probs = torch.sigmoid(logits) # 转换为概率
num = 2 * (probs * targets).sum(dim=(2,3)) + self.eps # 分子
den = probs.sum(dim=(2,3)) + targets.sum(dim=(2,3)) + self.eps # 分母
return 1 - (num/den).mean() # 返回Dice损失
# 计算IoU评分
def iou_score(preds, targets, eps=1e-6):
preds = (preds > 0.5).float() # 二值化预测结果
inter = (preds * targets).sum(dim=(2,3)) # 交集
union = preds.sum(dim=(2,3)) + targets.sum(dim=(2,3)) - inter # 并集
return ((inter+eps)/(union+eps)).mean().item() # 返回IoU评分
# ------------------ COCO 分割数据集 ------------------
class CocoSegDataset(Dataset):
def __init__(self, root_dir, annotation_file, transforms=None, mask_transforms=None):
self.root_dir = root_dir # 数据集根目录
self.transforms = transforms # 数据变换
self.mask_transforms = mask_transforms # 掩码变换
with open(annotation_file, 'r') as f:
self.coco = json.load(f) # 加载COCO标注文件
self.annotations = {}
for ann in self.coco['annotations']:
self.annotations.setdefault(ann['image_id'], []).append(ann) # 建立图像ID到标注的映射
self.image_ids = list(self.annotations.keys()) # 所有图像ID列表
def __len__(self): return len(self.image_ids) # 返回数据集大小
def __getitem__(self, idx):
img_id = self.image_ids[idx] # 获取图像ID
info = next(x for x in self.coco['images'] if x['id']==img_id) # 获取图像信息
img = Image.open(os.path.join(self.root_dir, info['file_name'])).convert('RGB') # 读取图像
h, w = info['height'], info['width'] # 获取图像尺寸
mask = np.zeros((h,w), dtype=np.uint8) # 初始化掩码
for ann in self.annotations[img_id]: # 生成掩码
seg = ann['segmentation']
if isinstance(seg, list): rle = maskUtils.merge(maskUtils.frPyObjects(seg,h,w))
else: rle = seg
mask += maskUtils.decode(rle)
mask = (mask>0).astype(np.float32) # 二值化掩码
mask = Image.fromarray(mask) # 转换为PIL图像
# 应用数据增强
if self.transforms and self.mask_transforms:
aug = self.transforms(image=np.array(img), mask=np.array(mask))
img_t = aug['image']; m_t = aug['mask'].unsqueeze(0)
else:
img_t = ToTensorV2()(image=np.array(img))['image']
m_t = ToTensorV2()(image=np.array(mask))['image']
return img_t, m_t # 返回处理后的图像和掩码
# ------------------ 主训练流程 ------------------
if __name__ == '__main__':
# 路径配置
train_dir, val_dir = '../data/train', '../data/valid' # 训练集和验证集目录
train_ann, val_ann = os.path.join(train_dir,'_annotations.coco.json'), os.path.join(val_dir,'_annotations.coco.json') # 标注文件路径
# 数据增强配置
train_tf = A.Compose([
A.Resize(256,256), # 调整尺寸
A.HorizontalFlip(0.5), # 水平翻转
A.RandomBrightnessContrast(0.2), # 随机亮度对比度
A.ShiftScaleRotate(0.5), # 随机位移缩放旋转
A.Normalize((0.485,0.456,0.406),(0.229,0.224,0.225)), # 归一化
ToTensorV2()]) # 转换为Tensor
val_tf = A.Compose([
A.Resize(256,256), # 调整尺寸
A.Normalize((0.485,0.456,0.406),(0.229,0.224,0.225)), # 归一化
ToTensorV2()]) # 转换为Tensor
# 数据加载
train_ds = CocoSegDataset(train_dir,train_ann,train_tf,train_tf) # 训练数据集
val_ds = CocoSegDataset(val_dir, val_ann, val_tf, val_tf) # 验证数据集
train_ld = DataLoader(train_ds,batch_size=8,shuffle=True,num_workers=4) # 训练数据加载器
val_ld = DataLoader(val_ds, batch_size=8,shuffle=False,num_workers=4) # 验证数据加载器
logging.info(f"Train samples: {len(train_ds)}, Val samples: {len(val_ds)}") # 输出数据集信息
# 模型与训练配置
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # 设备选择
print(f"当前设备:{device}") # 输出当前设备信息
model = UNet().to(device) # 初始化模型并移动到指定设备
opt = optim.AdamW(model.parameters(),lr=1e-3,weight_decay=1e-4) # 优化器
sched = optim.lr_scheduler.ReduceLROnPlateau(opt,'min',patience=3,factor=0.5) # 学习率调度器
bce = nn.BCEWithLogitsLoss(); dice = DiceLoss() # 损失函数
epochs=20; vis_dir='output/val_visuals'; os.makedirs(vis_dir,exist_ok=True) # 训练参数和可视化目录
# 训练循环
for ep in range(1,epochs+1):
model.train(); run_loss=0 # 设置为训练模式
for imgs,msks in train_ld:
imgs,msks=imgs.to(device),msks.to(device) # 将数据移动到指定设备
opt.zero_grad(); out=model(imgs) # 前向传播
l=(bce(out,msks)+dice(out,msks)); l.backward(); opt.step() # 计算损失、反向传播
run_loss+=l.item()*imgs.size(0) # 累计损失
tr_loss=run_loss/len(train_ds) # 计算平均训练损失
# 验证阶段
model.eval(); v_loss=0; v_iou=0; v_dice=0
with torch.no_grad():
for imgs,msks in val_ld:
imgs,msks=imgs.to(device),msks.to(device) # 将数据移动到指定设备
out=model(imgs) # 前向传播
v_loss+=(bce(out,msks)+dice(out,msks)).item()*imgs.size(0) # 累计验证损失
pr=torch.sigmoid(out) # 转换为概率
v_iou+=iou_score(pr,msks)*imgs.size(0) # 累计IoU评分
v_dice+=(1 - dice(out,msks)).item()*imgs.size(0) # 累计Dice评分
v_loss/=len(val_ds); v_iou/=len(val_ds); v_dice/=len(val_ds) # 计算平均验证指标
# 输出训练信息
logging.info(f"Epoch {ep}/{epochs} - Tr:{tr_loss:.4f} Val:{v_loss:.4f} IoU:{v_iou:.4f} Dice:{v_dice:.4f}")
# 可视化
si,sm=next(iter(val_ld)); si=si.to(device) # 获取示例图像
with torch.no_grad(): sp=torch.sigmoid(model(si)) # 进行预测
grid=vutils.make_grid(torch.cat([si.cpu(),sm.repeat(1,3,1,1).cpu(),sp.repeat(1,3,1,1).cpu()],0),nrow=si.size(0)) # 创建网格
vpth=os.path.join(vis_dir,f'ep{ep}.png'); vutils.save_image(grid,vpth) # 保存可视化结果
logging.info(f"Saved visual: {vpth}") # 输出保存信息
sched.step(v_loss) # 更新学习率
# 保存模型权重
torch.save(model.state_dict(),'unet_coco_segmentation.pth')
logging.info('训练完成,模型已保存')