Prim-and-Kruskal/mst.py

75 lines
2.3 KiB
Python
Raw Permalink Normal View History

2024-12-16 08:42:11 +00:00
import heapq
# 图的表示方式
class Graph:
def __init__(self, vertices):
self.V = vertices # 顶点数
self.graph = [] # 存储边的列表
def add_edge(self, u, v, weight):
self.graph.append([u, v, weight])
# Prim 算法
def prim_mst(self):
mst_set = [False] * self.V # 记录是否已加入 MST
edge_heap = [(0, 0, -1)] # (权值, 顶点, 父节点) (-1 表示起始节点无父节点)
total_cost = 0
mst_edges = []
while edge_heap and len(mst_edges) < self.V - 1:
weight, u, parent = heapq.heappop(edge_heap)
if mst_set[u]: # 忽略已在 MST 中的节点
continue
mst_set[u] = True
total_cost += weight
# 将加入的边存储(跳过起始节点的 -1 父节点)
if parent != -1:
mst_edges.append((parent, u, weight))
# 将相邻边加入优先队列
for v, w in self._adjacent_edges(u):
if not mst_set[v]:
heapq.heappush(edge_heap, (w, v, u))
return total_cost, mst_edges
def _adjacent_edges(self, u):
# 返回与顶点 u 相连的所有边
return [(v, weight) for (u_, v, weight) in self.graph if u_ == u] + \
[(u, weight) for (u, v_, weight) in self.graph if v_ == u]
# Kruskal 算法
def kruskal_mst(self):
self.graph.sort(key=lambda x: x[2]) # 按权值排序
parent = list(range(self.V))
rank = [0] * self.V
def find(u):
if parent[u] != u:
parent[u] = find(parent[u])
return parent[u]
def union(u, v):
root_u = find(u)
root_v = find(v)
if rank[root_u] > rank[root_v]:
parent[root_v] = root_u
elif rank[root_u] < rank[root_v]:
parent[root_u] = root_v
else:
parent[root_v] = root_u
rank[root_u] += 1
mst_edges = []
total_cost = 0
for u, v, weight in self.graph:
if find(u) != find(v):
union(u, v)
mst_edges.append((u, v, weight))
total_cost += weight
return total_cost, mst_edges