import requests import zipfile import os import pandas as pd from sklearn.model_selection import train_test_split, cross_val_score from sklearn.ensemble import RandomForestRegressor from sklearn.metrics import mean_squared_error from sklearn.preprocessing import StandardScaler, LabelEncoder import matplotlib.pyplot as plt import matplotlib import numpy as np def main(): # 设置支持中文的字体(例如:SimHei 字体) matplotlib.rcParams['font.sans-serif'] = ['SimHei'] # 或使用 'Microsoft YaHei' matplotlib.rcParams['axes.unicode_minus'] = False # 防止负号显示为方块 # 获取数据资源 URL(选择最新版本的 ZIP 文件) url = "https://datasets.wri.org/private-admin/dataset/53623dfd-3df6-4f15-a091-67457cdb571f/resource/66bcdacc-3d0e-46ad-9271-a5a76b1853d2/download/globalpowerplantdatabasev130.zip" # 下载 ZIP 文件 response = requests.get(url) zip_path = "global_power_plant_data.zip" with open(zip_path, 'wb') as file: file.write(response.content) # 解压 ZIP 文件 with zipfile.ZipFile(zip_path, 'r') as zip_ref: zip_ref.extractall("data") # 确保解压后的文件名和路径 csv_file = "data/global_power_plant_database.csv" if not os.path.exists(csv_file): print(f"错误: 文件 {csv_file} 不存在!") return # 加载解压后的 CSV 数据 data = pd.read_csv(csv_file, dtype={'other_fuel3': str}) # 数据预处理 data.fillna(0, inplace=True) # 用 0 填充缺失值 # 确保 'owner' 列的类型统一为字符串类型 data['owner'] = data['owner'].astype(str) # 对分类列进行编码(例如 primary_fuel, owner) label_encoder = LabelEncoder() data['primary_fuel'] = label_encoder.fit_transform(data['primary_fuel']) data['owner'] = label_encoder.fit_transform(data['owner']) # 确保发电量列存在并计算总发电量 generation_columns = ['generation_gwh_2013', 'generation_gwh_2014', 'generation_gwh_2015', 'generation_gwh_2016', 'generation_gwh_2017'] # 确保所有发电量列都存在 missing_cols = [col for col in generation_columns if col not in data.columns] if missing_cols: print(f"警告: 缺少以下列: {', '.join(missing_cols)}") return # 聚合不同年份的发电数据 data['total_generation'] = data[generation_columns].sum(axis=1) # 清理数据,移除异常值 data = data[(data['capacity_mw'] > 0) & (data['capacity_mw'] < 5000)] # 假设容量过大或过小的数据无效 data = data[data['total_generation'] >= 0] # 确保发电量是正数 # 再次检查数据的统计信息 print(data.describe()) # 选择特征(X)和目标变量(y) X = data[['capacity_mw', 'latitude', 'longitude', 'primary_fuel', 'total_generation']] y = data['generation_gwh_2017'] # 预测目标:2017年的发电量 # 将数据分割为训练集和测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # 特征标准化 scaler = StandardScaler() X_train_scaled = scaler.fit_transform(X_train) X_test_scaled = scaler.transform(X_test) # 初始化并训练随机森林回归模型 model = RandomForestRegressor(n_estimators=100, random_state=42) model.fit(X_train_scaled, y_train) # 在测试集上进行预测 y_pred = model.predict(X_test_scaled) # 评估模型 mse = mean_squared_error(y_test, y_pred) rmse = mse ** 0.5 print(f"均方根误差(RMSE):{rmse}") # 可视化预测值与实际值,使用不同颜色标记 plt.scatter(y_test, y_pred, color='blue', label='预测发电量', alpha=0.6) plt.scatter(y_test, y_test, color='red', label='实际发电量', alpha=0.6) plt.xlabel('实际发电量 (GWh)') plt.ylabel('预测发电量 (GWh)') plt.title('实际 vs 预测发电量') plt.legend() plt.show() # 交叉验证(例如使用10折交叉验证) cv_scores = cross_val_score(model, X_train_scaled, y_train, cv=10, scoring='neg_mean_squared_error') # 检查是否存在 NaN 值 if np.any(np.isnan(cv_scores)): print("警告: 交叉验证中发现 NaN 值,可能由数据问题导致。") # 输出交叉验证的每折得分(RMSE) print("交叉验证的每折结果(负均方误差):") for i, score in enumerate(cv_scores, 1): if np.isnan(score): print(f"折 {i}: 无效得分") else: print(f"score: {score}") print(f"折 {i}: {(-score) ** 0.5:.4f} RMSE") # 输出交叉验证的平均RMSE mean_rmse = (-cv_scores.mean()) ** 0.5 print(f"交叉验证的平均RMSE:{mean_rmse:.4f}") # 可视化交叉验证结果 plt.figure(figsize=(8, 6)) plt.plot(range(1, 11), -cv_scores, marker='o', label='每折负均方误差') plt.xlabel('折数') plt.ylabel('负均方误差') plt.title('交叉验证结果(每折负均方误差)') plt.xticks(range(1, 11)) plt.legend() plt.grid(True) plt.show() if __name__ == "__main__": main()