feat(Test): 优化能源预测模型并添加交叉验证
- 添加数据清理步骤,移除异常值- 对特征进行标准化处理 - 引入交叉验证评估模型性能 - 增加可视化交叉验证结果的图表 - 优化代码结构,提高可读性和可维护性
This commit is contained in:
parent
6756de70cc
commit
0bf372d423
@ -2,12 +2,14 @@ import requests
|
||||
import zipfile
|
||||
import os
|
||||
import pandas as pd
|
||||
from sklearn.model_selection import train_test_split
|
||||
from sklearn.model_selection import train_test_split, cross_val_score
|
||||
from sklearn.ensemble import RandomForestRegressor
|
||||
from sklearn.metrics import mean_squared_error
|
||||
from sklearn.preprocessing import LabelEncoder
|
||||
from sklearn.preprocessing import StandardScaler, LabelEncoder
|
||||
import matplotlib.pyplot as plt
|
||||
import matplotlib
|
||||
import numpy as np
|
||||
|
||||
|
||||
def main():
|
||||
# 设置支持中文的字体(例如:SimHei 字体)
|
||||
@ -35,7 +37,6 @@ def main():
|
||||
|
||||
# 加载解压后的 CSV 数据
|
||||
data = pd.read_csv(csv_file, dtype={'other_fuel3': str})
|
||||
# data = pd.read_csv(csv_file)
|
||||
|
||||
# 数据预处理
|
||||
data.fillna(0, inplace=True) # 用 0 填充缺失值
|
||||
@ -61,19 +62,31 @@ def main():
|
||||
# 聚合不同年份的发电数据
|
||||
data['total_generation'] = data[generation_columns].sum(axis=1)
|
||||
|
||||
# 清理数据,移除异常值
|
||||
data = data[(data['capacity_mw'] > 0) & (data['capacity_mw'] < 5000)] # 假设容量过大或过小的数据无效
|
||||
data = data[data['total_generation'] >= 0] # 确保发电量是正数
|
||||
|
||||
# 再次检查数据的统计信息
|
||||
print(data.describe())
|
||||
|
||||
# 选择特征(X)和目标变量(y)
|
||||
X = data[['capacity_mw', 'latitude', 'longitude', 'primary_fuel', 'total_generation']] # 示例特征
|
||||
X = data[['capacity_mw', 'latitude', 'longitude', 'primary_fuel', 'total_generation']]
|
||||
y = data['generation_gwh_2017'] # 预测目标:2017年的发电量
|
||||
|
||||
# 将数据分割为训练集和测试集
|
||||
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
|
||||
|
||||
# 特征标准化
|
||||
scaler = StandardScaler()
|
||||
X_train_scaled = scaler.fit_transform(X_train)
|
||||
X_test_scaled = scaler.transform(X_test)
|
||||
|
||||
# 初始化并训练随机森林回归模型
|
||||
model = RandomForestRegressor(n_estimators=100, random_state=42)
|
||||
model.fit(X_train, y_train)
|
||||
model.fit(X_train_scaled, y_train)
|
||||
|
||||
# 在测试集上进行预测
|
||||
y_pred = model.predict(X_test)
|
||||
y_pred = model.predict(X_test_scaled)
|
||||
|
||||
# 评估模型
|
||||
mse = mean_squared_error(y_test, y_pred)
|
||||
@ -89,6 +102,36 @@ def main():
|
||||
plt.legend()
|
||||
plt.show()
|
||||
|
||||
# 交叉验证(例如使用10折交叉验证)
|
||||
cv_scores = cross_val_score(model, X_train_scaled, y_train, cv=10, scoring='neg_mean_squared_error')
|
||||
|
||||
# 检查是否存在 NaN 值
|
||||
if np.any(np.isnan(cv_scores)):
|
||||
print("警告: 交叉验证中发现 NaN 值,可能由数据问题导致。")
|
||||
|
||||
# 输出交叉验证的每折得分(RMSE)
|
||||
print("交叉验证的每折结果(负均方误差):")
|
||||
for i, score in enumerate(cv_scores, 1):
|
||||
if np.isnan(score):
|
||||
print(f"折 {i}: 无效得分")
|
||||
else:
|
||||
print(f"score: {score}")
|
||||
print(f"折 {i}: {(-score) ** 0.5:.4f} RMSE")
|
||||
|
||||
# 输出交叉验证的平均RMSE
|
||||
mean_rmse = (-cv_scores.mean()) ** 0.5
|
||||
print(f"交叉验证的平均RMSE:{mean_rmse:.4f}")
|
||||
|
||||
# 可视化交叉验证结果
|
||||
plt.figure(figsize=(8, 6))
|
||||
plt.plot(range(1, 11), -cv_scores, marker='o', label='每折负均方误差')
|
||||
plt.xlabel('折数')
|
||||
plt.ylabel('负均方误差')
|
||||
plt.title('交叉验证结果(每折负均方误差)')
|
||||
plt.xticks(range(1, 11))
|
||||
plt.legend()
|
||||
plt.grid(True)
|
||||
plt.show()
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
|
Loading…
Reference in New Issue
Block a user