116 lines
4.3 KiB
Markdown
116 lines
4.3 KiB
Markdown
|
好的,以下是使用 **Dinic's Algorithm** 实现最大流问题的 Python 代码。Dinic 算法比 Edmonds-Karp 更高效,尤其是在稀疏图中。它使用分层网络和每一层的增广路径来提高效率。
|
|||
|
|
|||
|
### **Dinic算法的Python实现:**
|
|||
|
|
|||
|
```python
|
|||
|
from collections import deque
|
|||
|
|
|||
|
class MaxFlow:
|
|||
|
def __init__(self, vertices):
|
|||
|
self.V = vertices # 图的顶点数
|
|||
|
self.graph = [[] for _ in range(vertices)] # 邻接表表示图
|
|||
|
self.level = [-1] * vertices # 层次标记
|
|||
|
self.ptr = [0] * vertices # 每个节点在其邻接边中的指针
|
|||
|
|
|||
|
def add_edge(self, u, v, capacity):
|
|||
|
"""添加从u到v的边,并反向边的容量初始化为0"""
|
|||
|
self.graph[u].append([v, capacity, len(self.graph[v])]) # (目标点, 容量, 反向边的索引)
|
|||
|
self.graph[v].append([u, 0, len(self.graph[u]) - 1]) # (源点, 容量0, 反向边的索引)
|
|||
|
|
|||
|
def bfs(self, source, sink):
|
|||
|
"""BFS进行分层图构建"""
|
|||
|
queue = deque([source])
|
|||
|
self.level = [-1] * self.V
|
|||
|
self.level[source] = 0
|
|||
|
|
|||
|
while queue:
|
|||
|
u = queue.popleft()
|
|||
|
|
|||
|
for v, cap, _ in self.graph[u]:
|
|||
|
if self.level[v] == -1 and cap > 0: # 未访问且容量大于0
|
|||
|
self.level[v] = self.level[u] + 1
|
|||
|
if v == sink:
|
|||
|
return True
|
|||
|
queue.append(v)
|
|||
|
|
|||
|
return False
|
|||
|
|
|||
|
def dfs(self, u, sink, flow):
|
|||
|
"""DFS寻找增广路径并更新残余图"""
|
|||
|
if u == sink:
|
|||
|
return flow
|
|||
|
while self.ptr[u] < len(self.graph[u]):
|
|||
|
v, cap, rev = self.graph[u][self.ptr[u]]
|
|||
|
if self.level[v] == self.level[u] + 1 and cap > 0:
|
|||
|
current_flow = min(flow, cap)
|
|||
|
result = self.dfs(v, sink, current_flow)
|
|||
|
if result > 0:
|
|||
|
# 更新正向边和反向边
|
|||
|
self.graph[u][self.ptr[u]][1] -= result
|
|||
|
self.graph[v][rev][1] += result
|
|||
|
return result
|
|||
|
self.ptr[u] += 1
|
|||
|
return 0
|
|||
|
|
|||
|
def dinic(self, source, sink):
|
|||
|
"""Dinic算法计算最大流"""
|
|||
|
max_flow = 0
|
|||
|
while self.bfs(source, sink):
|
|||
|
self.ptr = [0] * self.V
|
|||
|
while True:
|
|||
|
flow = self.dfs(source, sink, float('Inf'))
|
|||
|
if flow == 0:
|
|||
|
break
|
|||
|
max_flow += flow
|
|||
|
return max_flow
|
|||
|
|
|||
|
|
|||
|
# 示例
|
|||
|
if __name__ == "__main__":
|
|||
|
vertices = 6
|
|||
|
g = MaxFlow(vertices)
|
|||
|
|
|||
|
# 添加边及其容量
|
|||
|
g.add_edge(0, 1, 16)
|
|||
|
g.add_edge(0, 2, 13)
|
|||
|
g.add_edge(1, 2, 10)
|
|||
|
g.add_edge(1, 3, 12)
|
|||
|
g.add_edge(2, 1, 4)
|
|||
|
g.add_edge(2, 4, 14)
|
|||
|
g.add_edge(3, 2, 9)
|
|||
|
g.add_edge(3, 5, 20)
|
|||
|
g.add_edge(4, 3, 7)
|
|||
|
g.add_edge(4, 5, 4)
|
|||
|
|
|||
|
source = 0 # 源点
|
|||
|
sink = 5 # 汇点
|
|||
|
|
|||
|
max_flow = g.dinic(source, sink)
|
|||
|
print("最大流为:", max_flow)
|
|||
|
```
|
|||
|
|
|||
|
### **代码解释:**
|
|||
|
1. **添加边:** `add_edge(u, v, capacity)` 方法将一条从节点 `u` 到 `v` 的边加入图中,且边的容量为 `capacity`。同时,在反向边上初始化容量为 0。
|
|||
|
2. **BFS(层次图构建):** `bfs(source, sink)` 方法通过广度优先搜索构建分层网络,标记每个节点的层次,帮助找增广路径。
|
|||
|
3. **DFS(增广路径):** `dfs(u, sink, flow)` 方法通过深度优先搜索,在层次网络中寻找增广路径并进行流量传递。
|
|||
|
4. **Dinic算法:** `dinic(source, sink)` 方法利用层次图和增广路径相结合的方式进行多轮流量增广,直到没有更多增广路径为止。
|
|||
|
|
|||
|
### **算法分析:**
|
|||
|
1. **时间复杂度:**
|
|||
|
- 每轮BFS的时间复杂度为 \(O(V + E)\),
|
|||
|
- 每轮DFS的时间复杂度为 \(O(E)\)。
|
|||
|
- 总体时间复杂度为 \(O(V^2 E)\),在稀疏图中,相较于Edmonds-Karp更为高效。
|
|||
|
|
|||
|
2. **空间复杂度:**
|
|||
|
- 使用了邻接表来表示图,空间复杂度为 \(O(V + E)\),其中V为节点数,E为边数。
|
|||
|
|
|||
|
### **实验输出:**
|
|||
|
运行代码后,输出的最大流值如下:
|
|||
|
```
|
|||
|
最大流为: 23
|
|||
|
```
|
|||
|
|
|||
|
### **总结:**
|
|||
|
使用 Dinic 算法可以在稀疏图中高效计算最大流,比 Edmonds-Karp 更加高效,尤其在实际问题中,当图的边数和顶点数较大时,Dinic 算法的表现尤为突出。
|
|||
|
|
|||
|
如果有任何问题或者需要进一步的解释,随时告诉我!
|