use yolo12 to detect isolators
Go to file
fly6516 c33f35d0de feat(Isolators-Detection): 添加训练和验证集标签
- 在 train/labels 和 valid/labels目录下添加了多个标签文件
- 标签文件包含物体检测的坐标信息
- 此次添加的标签主要用于绝缘子检测任务
2025-03-25 10:26:19 +08:00
runs/detect feat(Isolators-Detection): 添加训练和验证集标签 2025-03-25 10:26:19 +08:00
train feat(Isolators-Detection): 添加训练和验证集标签 2025-03-25 10:26:19 +08:00
valid feat(Isolators-Detection): 添加训练和验证集标签 2025-03-25 10:26:19 +08:00
data.yaml feat(Isolators-Detection): 添加训练和验证集标签 2025-03-25 10:26:19 +08:00
README.dataset.txt feat(Isolators-Detection): 添加训练和验证集标签 2025-03-25 10:26:19 +08:00
README.roboflow.txt feat(Isolators-Detection): 添加训练和验证集标签 2025-03-25 10:26:19 +08:00
test.py feat(Isolators-Detection): 添加训练和验证集标签 2025-03-25 10:26:19 +08:00
train.py feat(Isolators-Detection): 添加训练和验证集标签 2025-03-25 10:26:19 +08:00

isolators - v1 2024-06-17 7:53am
==============================

This dataset was exported via roboflow.com on March 24, 2025 at 2:03 PM GMT

Roboflow is an end-to-end computer vision platform that helps you
* collaborate with your team on computer vision projects
* collect & organize images
* understand and search unstructured image data
* annotate, and create datasets
* export, train, and deploy computer vision models
* use active learning to improve your dataset over time

For state of the art Computer Vision training notebooks you can use with this dataset,
visit https://github.com/roboflow/notebooks

To find over 100k other datasets and pre-trained models, visit https://universe.roboflow.com

The dataset includes 130 images.
Isolators are annotated in YOLOv12 format.

The following pre-processing was applied to each image:
* Auto-orientation of pixel data (with EXIF-orientation stripping)
* Resize to 640x480 (Stretch)

No image augmentation techniques were applied.