judge4c/src/actions/ai-improve.ts
2025-05-16 03:48:37 +08:00

105 lines
3.0 KiB
TypeScript
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

"use server";
import {
OptimizeCodeInput,
OptimizeCodeOutput,
OptimizeCodeOutputSchema,
} from "@/types/ai-improve";
import { openai } from "@/lib/ai";
import { CoreMessage, generateText } from "ai";
import { PrismaClient } from '@/generated/client';
const prisma = new PrismaClient();
/**
* 调用AI优化代码
* @param input 包含代码、错误信息、题目ID的输入
* @returns 优化后的代码和说明
*/
export const optimizeCode = async (
input: OptimizeCodeInput
): Promise<OptimizeCodeOutput> => {
const model = openai("gpt-4o-mini");
// 获取题目详情如果提供了problemId
let problemDetails = "";
if (input.problemId) {
try {
const problem = await prisma.problem.findUnique({
where: { problemId: input.problemId },
});
if (problem) {
problemDetails = `
Problem Requirements:
-------------------
Description: ${problem.description}
Input: ${problem.inputSpec}
Output: ${problem.outputSpec}
Test Cases: ${JSON.stringify(problem.testCases)}
`;
}
} catch (error) {
console.error("Failed to fetch problem details:", error);
}
}
// 构建AI提示词
const prompt = `
Analyze the following programming code for potential errors, inefficiencies or code style issues.
Provide an optimized version of the code with explanations. Focus on:
1. Fixing any syntax errors
2. Improving performance
3. Enhancing code readability
4. Following best practices
Original code:
\`\`\`
${input.code}
\`\`\`
Error message (if any): ${input.error || "No error message provided"}
${problemDetails}
Respond ONLY with the JSON object containing the optimized code and explanations.
Format:
{
"optimizedCode": "optimized code here",
"explanation": "explanation of changes made",
"issuesFixed": ["list of issues fixed"]
}
`;
// 发送请求给OpenAI
const messages: CoreMessage[] = [{ role: "user", content: prompt }];
let text;
try {
const response = await generateText({
model: model,
messages: messages,
});
text = response.text;
} catch (error) {
console.error("Error generating text with OpenAI:", error);
throw new Error("Failed to generate response from OpenAI");
}
// 解析LLM响应
let llmResponseJson;
try {
const cleanedText = text.trim();
llmResponseJson = JSON.parse(cleanedText);
} catch (error) {
console.error("Failed to parse LLM response as JSON:", error);
console.error("LLM raw output:", text);
throw new Error("Invalid JSON response from LLM");
}
// 验证响应格式
const validationResult = OptimizeCodeOutputSchema.safeParse(llmResponseJson);
if (!validationResult.success) {
console.error("Zod validation failed:", validationResult.error.format());
throw new Error("Response validation failed");
}
return validationResult.data;
};