judge4c/src/actions/ai-improve.ts

105 lines
3.0 KiB
TypeScript
Raw Normal View History

"use server";
import {
OptimizeCodeInput,
OptimizeCodeOutput,
OptimizeCodeOutputSchema,
} from "@/types/ai-improve";
import { openai } from "@/lib/ai";
import { CoreMessage, generateText } from "ai";
2025-05-15 19:48:37 +00:00
import { PrismaClient } from '@/generated/client';
const prisma = new PrismaClient();
/**
* AI优化代码
* @param input ID的输入
* @returns
*/
export const optimizeCode = async (
input: OptimizeCodeInput
): Promise<OptimizeCodeOutput> => {
const model = openai("gpt-4o-mini");
// 获取题目详情如果提供了problemId
let problemDetails = "";
if (input.problemId) {
try {
const problem = await prisma.problem.findUnique({
where: { problemId: input.problemId },
});
if (problem) {
problemDetails = `
Problem Requirements:
-------------------
Description: ${problem.description}
Input: ${problem.inputSpec}
Output: ${problem.outputSpec}
Test Cases: ${JSON.stringify(problem.testCases)}
`;
}
} catch (error) {
console.error("Failed to fetch problem details:", error);
}
}
// 构建AI提示词
const prompt = `
Analyze the following programming code for potential errors, inefficiencies or code style issues.
Provide an optimized version of the code with explanations. Focus on:
1. Fixing any syntax errors
2. Improving performance
3. Enhancing code readability
4. Following best practices
Original code:
\`\`\`
${input.code}
\`\`\`
Error message (if any): ${input.error || "No error message provided"}
${problemDetails}
Respond ONLY with the JSON object containing the optimized code and explanations.
Format:
{
"optimizedCode": "optimized code here",
"explanation": "explanation of changes made",
"issuesFixed": ["list of issues fixed"]
}
`;
// 发送请求给OpenAI
const messages: CoreMessage[] = [{ role: "user", content: prompt }];
let text;
try {
const response = await generateText({
model: model,
messages: messages,
});
text = response.text;
} catch (error) {
console.error("Error generating text with OpenAI:", error);
throw new Error("Failed to generate response from OpenAI");
}
// 解析LLM响应
let llmResponseJson;
try {
const cleanedText = text.trim();
llmResponseJson = JSON.parse(cleanedText);
} catch (error) {
console.error("Failed to parse LLM response as JSON:", error);
console.error("LLM raw output:", text);
throw new Error("Invalid JSON response from LLM");
}
// 验证响应格式
const validationResult = OptimizeCodeOutputSchema.safeParse(llmResponseJson);
if (!validationResult.success) {
console.error("Zod validation failed:", validationResult.error.format());
throw new Error("Response validation failed");
}
return validationResult.data;
};